- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 统计
- 统计案例
- 计数原理
- 概率
- 随机变量及其分布
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
道路交通安全法中将饮酒后违法驾驶机动车的行为分成两个档次:“酒后驾车”和“醉酒驾车”,其检测标准是驾驶人员血液中的酒精含量Q(简称血酒含量,单位是毫克/100毫升),当20≤Q<80时,为酒后驾车;当Q≥80时,为醉酒驾车.某市公安局交通管理部门在某路段的一次拦查行动中,依法检查了200辆机动车驾驶员的血酒含量,其中查处酒后驾车的有6人,查处醉酒驾车的有2人,依据上述材料回答下列问题:
(Ⅰ)分别写出违法驾车发生的频率和醉酒驾车占违法驾车总数的百分数;
(Ⅱ)从违法驾车的8人中抽取2人,求取到醉酒驾车人数的分布列和期望,并指出所求期望的实际意义;
(Ⅲ)饮酒后违法驾驶机动车极易发生交通事故,假设酒后驾车和醉酒驾车发生交通事故的概率分别是0.1和0.25,且每位驾驶员是否发生交通事故是相互独立的.依此计算被查处的8名驾驶员中至少有一人发生交通事故的概率.(精确到0.01)并针对你的计算结果对驾驶员发出一句话的倡议.
(Ⅰ)分别写出违法驾车发生的频率和醉酒驾车占违法驾车总数的百分数;
(Ⅱ)从违法驾车的8人中抽取2人,求取到醉酒驾车人数的分布列和期望,并指出所求期望的实际意义;
(Ⅲ)饮酒后违法驾驶机动车极易发生交通事故,假设酒后驾车和醉酒驾车发生交通事故的概率分别是0.1和0.25,且每位驾驶员是否发生交通事故是相互独立的.依此计算被查处的8名驾驶员中至少有一人发生交通事故的概率.(精确到0.01)并针对你的计算结果对驾驶员发出一句话的倡议.
某校高一年级有四个班,其中一、二班为数学课改班,三、四班为数学非课改班.在期末考试中,课改班与非课改班的数学成绩优秀与非优秀人数统计如表.
(1)请完成上面的2×2列联表,并判断若按99%的可靠性要求,能否认为“成绩与课改有关”;
(2)把全部210人进行编号,从编号中有放回抽取4次,每次抽取1个,记被抽取的4人中的优秀人数为ξ,若每次抽取的结果是相互独立的,求ξ的分布列及数学期望Eξ.
| 优秀 | 非优秀 | 总计 |
课改班 | | 50 | |
非课改班 | 20 | | 110 |
合计 | | | 210 |
(1)请完成上面的2×2列联表,并判断若按99%的可靠性要求,能否认为“成绩与课改有关”;
(2)把全部210人进行编号,从编号中有放回抽取4次,每次抽取1个,记被抽取的4人中的优秀人数为ξ,若每次抽取的结果是相互独立的,求ξ的分布列及数学期望Eξ.
(本小题满分13分)盒中装有7个零件,其中5个是没有使用过的,2个是使用过的.
(Ⅰ)从盒中每次随机抽取1个零件,有放回的抽取3次,求3次抽取中恰有2次抽到使用过零件的概率;
(Ⅱ)从盒中任意抽取3个零件,使用后放回盒子中,设X为盒子中使用过零件的个数,求X的分布列和期望.
(Ⅰ)从盒中每次随机抽取1个零件,有放回的抽取3次,求3次抽取中恰有2次抽到使用过零件的概率;
(Ⅱ)从盒中任意抽取3个零件,使用后放回盒子中,设X为盒子中使用过零件的个数,求X的分布列和期望.
某超市有奖促销,抽奖规则是:每消费满50元,即可抽奖一次.抽奖方法是:在不透明的盒内装有标着1,2,3,4,5号码的5个小球,从中任取1球,若号码大于3就奖励10元,否则无奖,之后将球放回盒中,即完成一次抽奖,则某人抽奖2次恰中20元的概率为___________;若某人消费200元,则他中奖金额的期望是_________元.
有一种密码,明文由三个字母组成,密码由明文的这三个字母对应的五个数字组成.编码规则如下表.明文由表中每一排取一个字母组成,且第一排取的字母放在第一位,第二排取的字母放在第二位,第三排取的字母放在第三位,对应的密码由明文所取的三个字母对应的数字按相同的次序排成一组组成.(如:明文取的三个字母为AFP,则与它对应的五个数字(密码)就为11223)
(1)假设密码是11211,求这个密码对应的明文;
(2)设随机变量
表示密码中所含不同数字的个数.
①求
;②求随机变量
的分布列和数学期望.
第一排 | 明文字母 | A | B | C |
密码数字 | 11 | 12 | 13 | |
第二排 | 明文字母 | E | F | G |
密码数字 | 21 | 22 | 23 | |
第三排 | 明文字母 | M | N | P |
密码数字 | 1 | 2 | 3 |
(1)假设密码是11211,求这个密码对应的明文;
(2)设随机变量

①求


甲、乙两名篮球运动员,各自的投篮命中率分别为
与
,如果每人投篮两次.
(Ⅰ)求甲比乙少投进一次的概率;
(Ⅱ)若投进一个球得
分,未投进得
分,求两人得分之和
的分布列及数学期望
.


(Ⅰ)求甲比乙少投进一次的概率;
(Ⅱ)若投进一个球得




株洲市某中学利用周末组织教职员工进行了一次秋季登石峰山健身的活动,有
人参加,现将所有参加人员按年龄情况分为
,
,
,
,
,
,
等七组,其频率分布直方图如下图所示.已知
之间的参加者有8人.

(1)求
和
之间的参加者人数
;
(2)已知
和
之间各有
名数学教师,现从这两个组中各选取
人担任接待工作,设两组的选择互不影响,求两组选出的人中都至少有
名数学教师的概率?
(3)组织者从
之间的参加者(其中共有
名女教师,其余全为男教师)中随机选取
名担任后勤保障工作,其中女教师的人数为
,求
的分布列和数学期望
.










(1)求



(2)已知





(3)组织者从





