- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 统计
- 统计案例
- 计数原理
- 概率
- 随机变量及其分布
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
某陶瓷厂准备烧制甲、乙、丙三件不同的工艺品,制作过程必须先后经过两次烧制,当第一次烧制合格后方可进行第二次烧制,两次烧制过程相互独立.根据该厂现有的技术水平,经过第一次烧制后,甲、乙、丙三件产品的合格率依次为
,
,
.经过第二次烧制后,甲、乙、丙三件产品的合格率均为
.
(Ⅰ)求第一次烧制后恰有一件产品合格的概率;
(Ⅱ)求经过前后两次烧制后三件产品均合格的概率.




(Ⅰ)求第一次烧制后恰有一件产品合格的概率;
(Ⅱ)求经过前后两次烧制后三件产品均合格的概率.
因冰雪灾害,某柑橘基地果林严重收损,为此有关专家提出一种拯救果树的方案,该方案需分两年实施且相互独立.该方案预计第一年可以使柑橘产量恢复到灾前的1.0倍、0.9倍、0.8倍的概率分别是0.2、0.4、0.4;第二年可以使柑橘产量为第一年的1.5倍、1.25倍、1.0倍的概率分别是0.3、0.3、0.4,求两年后柑橘产量恰好达到灾前产量的概率_____________
某机械零件加工由
道工序组成,第
道工序的废品率为
,第
道工序的废品率为
,假定这两道工序出废品是彼此无关的,那么产品的废品率是____________.





.(本小题满分12分)
鲜花扫墓渐流行,清明节期间,吉安某鲜花店某种鲜花的进货价为每束10元,销售价为每束20元,若在清明节期间内没有售完,则在清明节营业结束后以每束5元的价格处理,据前5年的有关资料统计,这种鲜花的需求量X(束)服从以下分布:
(1)求a的值;
(2)当进货量为20,30束时,分别求出该店获利润的期望值;
(3)该店今年清明节前进该种鲜花多少束为宜?
鲜花扫墓渐流行,清明节期间,吉安某鲜花店某种鲜花的进货价为每束10元,销售价为每束20元,若在清明节期间内没有售完,则在清明节营业结束后以每束5元的价格处理,据前5年的有关资料统计,这种鲜花的需求量X(束)服从以下分布:
X | 20 | 30 | 40 | 50 |
P | 0.20 | 0.35 | a | 0.15 |
(1)求a的值;
(2)当进货量为20,30束时,分别求出该店获利润的期望值;
(3)该店今年清明节前进该种鲜花多少束为宜?
甲乙两人进行射击训练,每人射击两次,若甲乙两人一次射击命中目标的概率分别为
和
,且每次射击是否命中相互之间没有影响.
(I)求两人恰好各命中一次的概率;
(II)求两人击中目标的总次数
的分布列和期望.


(I)求两人恰好各命中一次的概率;
(II)求两人击中目标的总次数

某射手A第n次射击时击中靶心的概率为

(1)求A射击5次,直到第5次才击中靶心的概率P;
(2)若A共射击3次,求恰好击中1次靶心的概率。