- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- + 根据抛物线方程求焦点或准线
- 抛物线方程的四种形式与位置特征
- 抛物线的焦半径公式
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
已知抛物线
过点
,过点
作直线
与抛物线
交于不同两点
、
,过
作
轴的垂线分别与直线
、
交于点
、
,其中
为坐标原点.
(1)求抛物线
的方程;
(2)写出抛物线的焦点坐标和准线方程;
(3)求证:
为线段
的中点.














(1)求抛物线

(2)写出抛物线的焦点坐标和准线方程;
(3)求证:


已知椭圆
长轴的一个端点是抛物线
的焦点,且椭圆焦点与抛物线焦点的距离是1.
(1)求椭圆
的标准方程;
(2)若
是椭圆
的左右端点,
为原点,
是椭圆
上异于
的任意一点,直线
分别交
轴于
,问
是否为定值,说明理由.


(1)求椭圆

(2)若









