- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 抛物线的定义
- + 抛物线标准方程的形式
- 根据抛物线方程求焦点或准线
- 抛物线方程的四种形式与位置特征
- 抛物线的焦半径公式
- 抛物线标准方程的求法
- 抛物线的顶点、开口方向
- 抛物线的范围
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
已知抛物线E:
焦点F,过点F且斜率为2的直线与抛物线交于A、B两点,且
.
(1)求抛物线E的方程;
(2)设O是坐标原点,P,Q是抛物线E上分别位于x轴两侧的两个动点,且
①证明:直线PQ必过定点,并求出定点G的坐标;
②过G作PQ的垂线交抛物线于C,D两点,求四边形PCQD面积的最小值.


(1)求抛物线E的方程;
(2)设O是坐标原点,P,Q是抛物线E上分别位于x轴两侧的两个动点,且

①证明:直线PQ必过定点,并求出定点G的坐标;
②过G作PQ的垂线交抛物线于C,D两点,求四边形PCQD面积的最小值.
如图,已知抛物线
的焦点是
,准线是
.
(Ⅰ)写出焦点
的坐标和准线
的方程;
(Ⅱ)已知点
,若过点
的直线交抛物线
于不同的两点
、
(均与
不重合),直线
、
分别交
于点
、
求证:
.




(Ⅰ)写出焦点


(Ⅱ)已知点












已知抛物线
上一点
到焦点
的距离等于
.
求抛物线
的方程:
设不垂直与
轴的直线
与抛物线
交于
两点,直线
与
的倾斜角互补,求证:直线
过定点,并求出该定点的坐标.













