- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 直线与圆的位置关系
- + 圆的切线方程
- 过圆上一点的圆的切线方程
- 过圆外一点的圆的切线方程
- 切线长
- 切点弦及其方程
- 已知切线求参数
- 圆的弦长与弦心距
- 直线与圆的应用
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
过点(2,0)引直线l与曲线y=
相交于A,B两点,O为坐标原点,当△AOB的面积取最大值时,直线l的斜率等于( )

A.![]() | B.-![]() | C.±![]() | D.-![]() |
圆x2+y2-4x-2y-20=0的斜率为-
的切线方程是( )

A.4x+3y-36=0 | B.4x+3y+14=0 |
C.4x+3y-36=0或4x+3y+14=0 | D.不能确定 |
已知圆M过C(1,-1),D(-1,1)两点,且圆心M在x+y-2=0上.
(1)求圆M的方程;
(2)设点P是直线3x+4y+8=0上的动点,PA,PB是圆M的两条切线,A,B为切点,求四边形PAMB面积的最小值.
(1)求圆M的方程;
(2)设点P是直线3x+4y+8=0上的动点,PA,PB是圆M的两条切线,A,B为切点,求四边形PAMB面积的最小值.
设
,在平面直角坐标系中,已知向量
,向量
,
,动点
的轨迹为





A. (1)求轨迹E的方程,并说明该方程所表示曲线的形状; (2)已知 ![]() ![]() (3)已知 ![]() ![]() ![]() ![]() |
已知圆
,直线
与圆
相切,且交椭圆
于
两点,c是椭圆的半焦距,
(1)求m的值;
(2)O为坐标原点,若
,求椭圆
的方程;
(3)在(2)的条件下,设椭圆
的左右顶点分别为A,B,动点
,直线
与直线
分别交于M,N两点,求线段MN的长度的最小值






(1)求m的值;
(2)O为坐标原点,若


(3)在(2)的条件下,设椭圆



