- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- + 直线与方程
- 直线的倾斜角与斜率
- 直线的方程
- 直线的交点坐标与距离公式
- 直线综合
- 圆与方程
- 圆锥曲线
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
圆O:x2+y2=8内有一点P(﹣1,2),AB为过点P且倾斜角为α的弦,
(1)当α=135°时,求AB的长;
(2)当弦AB被点P平分时,写出直线AB的方程.
(1)当α=135°时,求AB的长;
(2)当弦AB被点P平分时,写出直线AB的方程.
已知
为坐标原点,点
在圆
:
上.
(1)求实数
的值;
(2)求过圆心
且与直线
平行的直线的方程;
(3)过点
作互相垂直的直线
,
,
与圆
交于
两点,
与圆
交于
两点,求
的最大值.




(1)求实数

(2)求过圆心


(3)过点










如图,在平面直角坐标系
中,已知点
,点
,
、
分别为线段
、
上的动点,且满足
.

(1)若
,求点
的坐标;
(2)设点
的坐标为
,求
的外接圆的一般方程,并求
的外接圆所过定点的坐标.









(1)若


(2)设点




如图,
,
是某景区的两条道路(宽度忽略不计,
为东西方向),Q为景区内一景点,A为道路
上一游客休息区,已知
,
(百米),Q到直线
,
的距离分别为3(百米),
(百米),现新修一条自A经过Q的有轨观光直路并延伸至道路
于点B,并在B处修建一游客休息区.

(1)求有轨观光直路
的长;
(2)已知在景点Q的正北方6百米的P处有一大型组合音乐喷泉,喷泉表演一次的时长为9分钟,表演时,喷泉喷洒区域以P为圆心,r为半径变化,且t分钟时,
(百米)(
,
).当喷泉表演开始时,一观光车S(大小忽略不计)正从休息区B沿(1)中的轨道
以
(百米/分钟)的速度开往休息区A,问:观光车在行驶途中是否会被喷泉喷洒到,并说明理由.











(1)求有轨观光直路

(2)已知在景点Q的正北方6百米的P处有一大型组合音乐喷泉,喷泉表演一次的时长为9分钟,表演时,喷泉喷洒区域以P为圆心,r为半径变化,且t分钟时,





数学家欧拉在1765年提出:三角形的外心、重心位于同一直线上,这条直线被后人称之为三角形的欧拉线,若
的顶点
,
,且
的欧拉线的方程为
.
(1)求
外心
(外接圆圆心)的坐标;
(2)求顶点
的坐标.
(注:如果
三个顶点坐标分别为
,
,
,则
重心的坐标是
.)





(1)求


(2)求顶点

(注:如果





