- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- + 直线与方程
- 直线的倾斜角与斜率
- 直线的方程
- 直线的交点坐标与距离公式
- 直线综合
- 圆与方程
- 圆锥曲线
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
古希腊数学家同波罗尼斯在他的巨著《圆锥曲线论》中有一个著名的几何问题:在平面上给定两点
,动点
满足
(其中
和
是正常数,且
),则
的轨迹是一个圆,这个圆称之为“阿波罗尼斯圆”.若
,
,动点
满足
,则该圆的圆心坐标为_______.











已知点A(﹣2,1),B(2,4),点P是直线l:y=x上的动点.
(1)若PA⊥PB,求点P的坐标;
(2)设过A的直线l1与过B的直线l2均平行于l,求l1与l2之间的距离.
(1)若PA⊥PB,求点P的坐标;
(2)设过A的直线l1与过B的直线l2均平行于l,求l1与l2之间的距离.