- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 直线与方程
- 圆与方程
- 圆锥曲线
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
已知中心在原点,焦点在
轴上的椭圆
的离心率为
,直线
过其短轴的一个端点.
(1)求椭圆
的标准方程;
(2)若过点
的直线
与椭圆
在第一象限相切于点
,求直线
的方程和点
的坐标.




(1)求椭圆

(2)若过点






已知椭圆
(
)的半焦距为
,原点
到经过两点
,
的直线的距离为
.
(Ⅰ)求椭圆
的离心率;
(Ⅱ)如图,
是圆
的一条直径,若椭圆
经过
,
两点,求椭圆
的方程.








(Ⅰ)求椭圆

(Ⅱ)如图,








已知椭圆
上的点
到左,右两焦点为
,
的距离之和为
,离心率为
.
(1)求椭圆的标准方程;
(2)过右焦点
的直线
交椭圆于
两点,若
轴上一点
满足
,求直线
的斜率
的值.






(1)求椭圆的标准方程;
(2)过右焦点








已知
分别是椭圆的左,右焦点,现以
为圆心作一个圆恰好经过椭圆中心并且交椭圆于点
,若过
的直线
是圆
的切线,则椭圆的离心率为( )






A.![]() | B.![]() | C.![]() | D.![]() |