- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 直线与方程
- 圆与方程
- 圆锥曲线
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
已知椭圆
过点
,其离心率
.
(1)求椭圆
的方程;
(2)若直线
不经过点
,且与椭圆
相交于
两点(
、
不重合),若直线
与直线
的斜率之积为
.
(ⅰ)证明:
过定点,并求出定点坐标;
(ⅱ)求
的面积的最大值.



(1)求椭圆

(2)若直线









(ⅰ)证明:

(ⅱ)求

已知椭圆
的左、右顶点为
,P是椭圆上异于M,N的动点,且
的面积的最大值为
,

(1)求椭圆的方程;
(2)四边形ABCD的顶点都在椭圆上,且对角线AC、BD都过原点,对角线的斜率
,求
的取值范围.






(1)求椭圆的方程;
(2)四边形ABCD的顶点都在椭圆上,且对角线AC、BD都过原点,对角线的斜率


已知圆C经过A(5,3),B(4,4)两点,且圆心在x轴上.
(1)求圆C的标准方程;
(2)若直线l过点(5,2),且被圆C所截得的弦长为6,求直线l的方程.
(1)求圆C的标准方程;
(2)若直线l过点(5,2),且被圆C所截得的弦长为6,求直线l的方程.
设椭圆
:
的左右焦点分别为
,
,离心率
,过
且垂直于
轴的直线被椭圆
截得的长为
.
(1)求椭圆
的方程;
(2)已知点
的坐标为
,直线
:
不过点
且与椭圆
交于
、
两点,设
为坐标原点,
,求证:直线
过定点.









(1)求椭圆

(2)已知点










