- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 空间向量的坐标表示
- 空间向量的坐标运算
- 空间向量模长的坐标表示
- 空间向量平行的坐标表示
- 空间向量垂直的坐标表示
- + 空间向量夹角余弦的坐标表示
- 平面解析几何
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
如图①,在五边形
中,
,
,
,
,
是以
为斜边的等腰直角三角形.现将
沿
折起,使平面
平面
,如图②,记线段
的中点为
.

(1)求证:平面
平面
;
(2)求平面
与平面
所成的锐二面角的大小.














(1)求证:平面


(2)求平面


如图,在棱长为2的正方体
中,M是线段AB上的动点.

证明:
平面
;
若点M是AB中点,求二面角
的余弦值;
判断点M到平面
的距离是否为定值?若是,求出定值;若不是,请说明理由.








