- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 空间中点的位置及坐标特征
- + 求空间图形上的点的坐标
- 关于坐标轴、坐标平面、原点对称的点的坐标
- 平面解析几何
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
如图所示,四棱锥
的底面ABCD是边长为1的菱形,∠BCD=
,E是CD的中点,PA⊥底面ABCD,PA=2.试建立适当的空间直角坐标系,求出
的坐标.




如图,以棱长为1的正方体的具有公共顶点的三条棱所在直线为坐标轴,建立空间直角坐标系Oxyz,点P在对角线AB上运动,点Q在棱CD上运动.

(1)当P是AB的中点,且2|CQ|=|QD|时,求|PQ|的值;
(2)当Q是棱CD的中点时,试求|PQ|的最小值及此时点P的坐标.

(1)当P是AB的中点,且2|CQ|=|QD|时,求|PQ|的值;
(2)当Q是棱CD的中点时,试求|PQ|的最小值及此时点P的坐标.
已知棱长为2的正方体
,点M、N分别是
和
的中点,建立如图所示的空间直角坐标系.
(1)写出图中M、N的坐标;
(2)求直线AM与NC所成角的余弦值.



(1)写出图中M、N的坐标;
(2)求直线AM与NC所成角的余弦值.
