- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- + 基本不等式求积的最大值
- 基本不等式求和的最小值
- 二次与二次(或一次)的商式的最值
- 条件等式求最值
- 基本不等式的恒成立问题
- 对勾函数求最值
- 容积的最值问题
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
已知函数
,
.
(1)证明:函数
在区间
上为增函数,并指出函数
在区间
上的单调性.
(2)若函数
的图像与直线
有两个不同的交点
,
,其中
,求
关于
的函数关系式.
(3)求
的取值范围.


(1)证明:函数




(2)若函数







(3)求

如图所示的自动通风设施.该设施的下部
是等腰梯形,其中
米,梯形的高为
米,
米,上部
是个半圆,固定点
为
的中点.△
是由电脑控制其形状变化的三角通风窗(阴影部分均不通风),
是可以沿设施边框上下滑动且始终保持和
平行的伸缩横杆.

(1)设
与
之间的距离为
米,试将三角通风窗
的通风面积
(平方米)表示成关于
的函数
;
(2)当
与
之间的距离为多少米时,三角通风窗
的通风面积最大?并求出这个最大面积.











(1)设







(2)当


