- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- + 基本不等式求积的最大值
- 基本不等式求和的最小值
- 二次与二次(或一次)的商式的最值
- 条件等式求最值
- 基本不等式的恒成立问题
- 对勾函数求最值
- 容积的最值问题
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
已知动圆
与圆
相内切,且与圆
相内切,记圆心
的轨迹为曲线
(1)求曲线
的方程;
(2)直线
与曲线
交于不同的
两点,求
面积的最大值. (
为坐标原点)





(1)求曲线

(2)直线





抛物线y2=2px(p>0)的焦点为F,已知点A,B为抛物线上的两个动点,且满足∠AFB=120°,过弦AB的中点M作抛物线准线的垂线MN,垂足为N,则
的最大值为________.

2018年是中国改革开放40周年,改革开放40年来,从开启新时期到跨入新世纪,从站上新起点到进人新时代,我们党引领人民绘就了一幅波澜壮阔、气势恢宏的历史画卷,谱写了一曲感天动地、气壮山河的奋斗赞歌,40年来我们始终坚持保护环境和节约资源,坚持推进生态文明建设,郑州市政府也越来越重视生态系统的重建和维护,若市财政下拨一项专款100百万元,分别用于植绿护绿和处理污染两个生态维护项目,植绿护绿项目五年内带来的生态收益可表示为投放资金x(单位:百万元)的函数M(x(单位:百万元):
,处理污染项目五年内带来的生态收益可表示为投放资金x(单位:百万元)的函数N(x)(单位:百万元):
.
(Ⅰ)设分配给植绿护绿项目的资金为x(百万元),则两个生态项目五年内带来的收益总和为y,写出y关于x的函数解析式和定义域.
(Ⅱ)生态项目的投资开始利润薄弱,只有持之以恒,才能功在当代,利在千秋,试求出y的最大值,并求出此时对两个生态项目的投资分别为多少?


(Ⅰ)设分配给植绿护绿项目的资金为x(百万元),则两个生态项目五年内带来的收益总和为y,写出y关于x的函数解析式和定义域.
(Ⅱ)生态项目的投资开始利润薄弱,只有持之以恒,才能功在当代,利在千秋,试求出y的最大值,并求出此时对两个生态项目的投资分别为多少?