- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 基本不等式(均值定理)
- + 基本(均值)不等式求最值
- 基本不等式求积的最大值
- 基本不等式求和的最小值
- 二次与二次(或一次)的商式的最值
- 条件等式求最值
- 基本不等式的恒成立问题
- 对勾函数求最值
- 容积的最值问题
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
某工厂修建一个长方体无盖蓄水池,其容积为6400立方米,深度为4米.池底每平方米的造价为120元,池壁每平方米的造价为100元.设池底长方形的长为x米.
(Ⅰ)求底面积,并用含x的表达式表示池壁面积;
(Ⅱ)怎样设计水池能使总造价最低?最低造价是多少?
(Ⅰ)求底面积,并用含x的表达式表示池壁面积;
(Ⅱ)怎样设计水池能使总造价最低?最低造价是多少?
已知椭圆
:
的左、右焦点分别为
,
,离心率为
,过点
的直线
交椭圆
于
,
两点,过点
的直线
交椭圆
于
,
两点,且
,当
轴时,
.
(Ⅰ)求椭圆
的标准方程;
(Ⅱ)求四边形
面积的最小值.


















(Ⅰ)求椭圆

(Ⅱ)求四边形

已知椭圆
:
的左顶点为
,右焦点为
,
为原点,
,
是
轴上的两个动点,且
,直线
和
分别与椭圆
交于
,
两点.
(Ⅰ)求
的面积的最小值;
(Ⅱ)证明:
,
,
三点共线.















(Ⅰ)求

(Ⅱ)证明:


