- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 数列的概念与简单表示法
- 等差数列
- 等比数列
- + 数列求和
- 倒序相加法求和
- 错位相减法求和
- 裂项相消法求和
- 分组(并项)法求和
- 数列求和的其他方法
- 数列的综合应用
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
已知直角
的三边长
,满足
(1)在
之间插入2011个数,使这2013个数构成以
为首项的等差数列
,且它们的和为
,求的最小值;
(2)已知
均为正整数,且
成等差数列,将满足条件的三角形的面积从小到大排成一列
,且
,求满足不等式
的所有
的值;
(3)已知
成等比数列,若数列
满足
,证明:数列
中的任意连续三项为边长均可以构成直角三角形,且
是正整数.



(1)在




(2)已知






(3)已知




