- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 写出等比数列的通项公式
- 由定义判定等比数列
- + 等比数列通项公式的基本量计算
- 由递推关系证明等比数列
- 验证是否为等比数列中的项
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
某区为推动教育现代化,计划从2012年至2016年为中小学每年新购置的电脑台数均按25%的比率增长.其中2014、2015年两年新购置的电脑数之和为1800,该区2016年为中小学新购置的电脑台数为多少?
(本小题满分13分)设数列{an}满足:a1=1,an+1=3an,n∈N*.设Sn为数列{bn}的前n项和,已知b1≠0,2bn–b1=S1•Sn,n∈N*.
(Ⅰ)求数列{an},{bn}的通项公式;
(Ⅱ)设cn=bn•log3an,求数列{cn}的前n项和Tn.
(Ⅰ)求数列{an},{bn}的通项公式;
(Ⅱ)设cn=bn•log3an,求数列{cn}的前n项和Tn.
(本小题满分16分)设
是公差为
的等差数列,
是公比为
(
)的等比数列.记
.
(1)求证:数列
为等比数列;
(2)已知数列
的前4项分别为4,10,19,34.
① 求数列
和
的通项公式;
② 是否存在元素均为正整数的集合
,
,…,
(
,
),使得数列
,
,…,
为等差数列?证明你的结论.






(1)求证:数列

(2)已知数列

① 求数列


② 是否存在元素均为正整数的集合








