- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 写出等比数列的通项公式
- 由定义判定等比数列
- + 等比数列通项公式的基本量计算
- 由递推关系证明等比数列
- 验证是否为等比数列中的项
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
在等比数列{an}中,a1=2,a3,a2+a4,a5成等差数列.
(1)求数列{an}的通项公式;
(2)若数列{bn}满足b1+
+…+
=an(n∈N*),{bn}的前n项和为Sn,求使Sn﹣nan+6≥0成立的正整数n的最大值.
(1)求数列{an}的通项公式;
(2)若数列{bn}满足b1+


(1)在等比数列
中,若
则
______________;
(2)在等比数列
中,已知
若
,则
______________;
(3)已知单调递增的等比数列
满足
,且
是
,
的等差中项,则数列
的通项公式为
______________.



(2)在等比数列




(3)已知单调递增的等比数列






