- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 由前n项和判断数列是否是等差数列
- + 由Sn求通项公式
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
已知数列
的前
项和
(1)若三角形的三边长分别为
,求此三角形的面积;
(2)探究数列
中是否存在相邻的三项,同时满足以下两个条件:
①此三项可作为三角形三边的长;
②此三项构成的三角形最大角是最小角的2倍.若存在,找出这样的三项;若不存在,说明理由.



(1)若三角形的三边长分别为

(2)探究数列

①此三项可作为三角形三边的长;
②此三项构成的三角形最大角是最小角的2倍.若存在,找出这样的三项;若不存在,说明理由.
已知函数
,在定义域内有且只有一个零点,存在
, 使得不等式
成立. 若
,
是数列
的前
项和.
(I)求数列
的通项公式;
(II)设各项均不为零的数列
中,所有满足
的正整数
的个数称为这个数列
的变号数,令
(
为正整数),求数列
的变号数;
(Ⅲ)设
(
且
),使不等式
恒成立,求正整数
的最大值.







(I)求数列

(II)设各项均不为零的数列







(Ⅲ)设




