- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 由前n项和判断数列是否是等差数列
- + 由Sn求通项公式
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
对于数列
,如果存在一个正整数
,使得对任意的
都有
成立,那么就把这样一类数列
称作周期为
的周期数列,
的最小值称作数列
的最小正周期,以下简称周期.例如当
时
是周期为
的周期数列,当
时
是周期为
的周期数列.
(1)设数列
满足
,
,
(
、
不同时为
),且数列
是周期为
的周期数列,求常数
的值;
(2)设数列
的前
项和为
,且
.
①若
,试判断数列
是否为周期数列,并说明理由;
②若
,试判断数列
是否为周期数列,并说明理由;
(3)设数列
满足
,
,
,
,数列
的前
项和为
,试问是否存在
、
,使对任意的
都有
成立,若存在,求出
、
的取值范围;不存在, 说明理由.














(1)设数列










(2)设数列




①若


②若


(3)设数列














已知数列{an}和{bn}中,数列{an}的前n项和记为Sn.若点(n,Sn)在函数y=﹣x2+4x
的图象上,点(n,bn)在函数y=2x的图象上.
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)求数列{anbn}的前n项和Tn.
的图象上,点(n,bn)在函数y=2x的图象上.
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)求数列{anbn}的前n项和Tn.