- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 等差数列及其通项公式
- + 等差中项
- 求等差中项
- 等差中项的应用
- 等差数列的性质
- 等差数列的函数特性
- 等差数列的前n项和
- an与Sn的关系——等差数列
- 等差数列前n项和的性质
- 等差数列前n项和的函数特性
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
给定数列
,若满足
且
,对于任意的n,
,都有
,则称数列
为“指数型数列”.
Ⅰ
已知数列
,
的通项公式分别为
,
,试判断
,
是不是“指数型数列”;
Ⅱ
若数列
满足:
,
,判断数列
是否为“指数型数列”,若是给出证明,若不是说明理由;
Ⅲ
若数列
是“指数型数列”,且
,证明:数列
中任意三项都不能构成等差数列.

























数列{an}是等差数列,a1=f(x+1),a2=0,a3=f(x-1),其中f(x)=x2-4x+2.
(1)求通项公式an;
(2)若数列{an}为递增数列,令bn=an+1+an+2+an+3+an+4,求数列{
}的前n项和Sn.
(1)求通项公式an;
(2)若数列{an}为递增数列,令bn=an+1+an+2+an+3+an+4,求数列{
