- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 判断等差数列
- 利用定义求等差数列通项公式
- 验证是否为等差数列中的项
- + 等差数列通项公式的基本量计算
- 由递推关系证明数列是等差数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
设{an}是公差不为零的等差数列,Sn为其前n项和,满,S7=7.
(1)求数列{an}的通项公式及前n项和Sn;
(2)试求所有的正整数m,使得为数列{an}中的项.
已知等差数列
,公差为
.
(1)令
,试证数列
为等差数列,并求出公差;
(2)推广到一般情形,令
(
为正整数),仿照(1)的结论,请叙述关于数列
的相应结论.


(1)令


(2)推广到一般情形,令


