- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 用定义求向量的数量积
- 数量积的运算律
- 已知数量积求模
- 向量夹角的计算
- + 垂直关系的向量表示
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
已知椭圆
一个顶点的坐标为
,且离心率
,
,
是其左、右顶点.过点
的直线
与
轴垂直,点
在直线
上,
为
的中点.设
是椭圆上异于椭圆顶点的一点,
轴,
为垂足,射线
与直线
交与点
,且
.
(1)求椭圆
的标准方程;
(2)若
,求
的值.



















(1)求椭圆

(2)若


已知向量
与向量
的对应关系用
表示.
(1) 证明:对于任意向量
、
及常数m、n,恒有
;
(2) 证明:对于任意向量
,
;
(3) 证明:对于任意向量
、
,若
,则
.



(1) 证明:对于任意向量



(2) 证明:对于任意向量


(3) 证明:对于任意向量



