- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 平面向量的实际背景及基本概念
- 平面向量的线性运算
- 平面向量的基本定理及坐标表示
- + 平面向量的数量积
- 平面向量数量积的定义
- 平面向量数量积的运算
- 数量积的坐标表示
- 平面向量的应用举例
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
已知向量
垂直于向量
,向量
垂直于向量
.
(1)求向量
与
的夹角;
(2)设
,且向量
满足
,求
的最小值;
(3)在(2)的条件下,随机选取一个向量
,求
的概率.




(1)求向量


(2)设




(3)在(2)的条件下,随机选取一个向量


在平面直角坐标系
中,已知抛物线
上一点
到其焦点
的距离为
.
(1)求抛物线的方程与准线方程;
(2)直线
与抛物线相交于
两点(
位于
轴的两侧),若
,求证直线
恒过定点.





(1)求抛物线的方程与准线方程;
(2)直线






椭圆
的左、右顶点分别为
,上、下顶点分别为
,左、右焦点分别为
,
,离心率为
.
(1)求椭圆
的方程;
(2)过右焦点
的直线
与椭圆
相交于
两点,试探究在
轴上是否存在定点
,使得可
为定值?若存在,求出点
的坐标,若不存在,请说明理由?






(1)求椭圆

(2)过右焦点







