- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 平面向量的实际背景及基本概念
- 平面向量的线性运算
- 平面向量的基本定理及坐标表示
- + 平面向量的数量积
- 平面向量数量积的定义
- 平面向量数量积的运算
- 数量积的坐标表示
- 平面向量的应用举例
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
已知抛物线
,
,
,其中
,过
的直线
交抛物线
与
,
.

(I)当
,且直线
垂直于
轴时,求证:
为直角三角形;
(Ⅱ)若
,当点
在直线
上时,是否存在实数
,使得
,若存在,求出
的值;若不存在,请说明理由.










(I)当




(Ⅱ)若






已知圆M:x2+(y﹣1)2=1,圆N:x2+(y+1)2=1,直线l1、l2分别过圆心M、N,且l1与圆M相交于A、B,l2与圆N相交于C、D,P是椭圆
上的任意一动点,则
的最小值为( )


A.![]() | B.![]() | C.3 | D.6 |
已知过点
的动直线
与圆
相交于
,
两点,
是
中点,
与直线
相交于
.
(1)当
与
垂直时,求
的方程;
(2)当
时,求直线
的方程;
(3)探究
是否与直线
的倾斜角有关?若无关,求出其值;若有关,请说明理由.










(1)当



(2)当


(3)探究


已知双曲线C:
,(
,
)的左、右焦点分别为
,
,O为坐标原点,P是双曲线在第一象限上的点,
,(
),
,则双曲线C的渐近线方程为( )








A.![]() | B.![]() | C.![]() | D.![]() |