- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 平面向量的实际背景及基本概念
- + 平面向量的线性运算
- 平面向量的加法
- 相反向量
- 平面向量的数乘
- 平面向量共线定理
- 平面向量的基本定理及坐标表示
- 平面向量的数量积
- 平面向量的应用举例
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
已知向量a=(1,3),b=(m-1,2m+3)在同一平面内,若对于这一平面内的任意向量c,有且只有一对实数λ,μ,使得c=λa+μb,则实数m满足( )
A.m≠-2 | B.m≠6 |
C.m≠-![]() | D.m≠-6 |
已知a=(1,2),b=(-3,2).
(1)求证:a和b是一组基底,并用它们表示向量c=(x0,y0);
(2)若(k2+1)a-4b与ka+b共线,求k的值.
(1)求证:a和b是一组基底,并用它们表示向量c=(x0,y0);
(2)若(k2+1)a-4b与ka+b共线,求k的值.