- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 正弦定理和余弦定理
- + 解三角形的实际应用
- 正、余弦定理在几何中的应用
- 正、余弦定理的实际应用
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
为了测量某塔的高度,某人在一条水平公路
两点进行测量.在
点测得塔底
在南偏西
,塔顶仰角为
,此人沿着南偏东
方向前进10米到
点,测得塔顶的仰角为
,则塔的高度为








A.5米 | B.10米 |
C.15米 | D.20米 |
如图,某公园有三条观光大道
、
、
围成直角三角形,其中直角边
,斜边
,现有甲、乙、丙三位小朋友分别在
、
、
大道上嬉戏,所在位置分别记为点
、
、
.
(1)若甲乙都以每分钟100
的速度从点
出发在各自的大道上奔走,到大道的另一端时即停,乙比甲迟2分钟出发,当乙出发1分钟后,求此时甲乙两人之间的距离;
(2)设
,乙丙之间的距离是甲乙之间距离的2倍,且
,请将甲乙之间的距离
表示为
的函数,并求甲乙之间的最小距离.











(1)若甲乙都以每分钟100


(2)设





如图所示,在一个坡度一定的山坡
的顶上有一高度为25
的建筑物
,为了测量该山坡相对于水平地面的坡角
,在山坡的
处测得
,沿山坡前进
到达
处,又测得
,根据以上数据得
.











《九章算术》“勾股”章有一题:“今有二人同立.甲行率七,乙行率三,乙东行,甲南行十步而斜东北与乙会,问甲乙各行几何?”大意是说:“已知甲、乙二人同时从同一地点出发,甲的速度为7,乙的速度为3,乙一直向东走,甲先向南走10步,后又斜向北偏东方向走了一段后与乙相遇.甲、乙各走了多少步? ” 请问乙走的步数是( )
A.![]() | B.![]() | C.![]() | D.![]() |
在数学建模课上,老师给大家带来了一则新闻:“2019年8月16日上午,423米的东莞第一高楼民盈国贸中心2号楼(以下简称“国贸中心”)正式封顶,随着最后一方混凝土浇筑到位,标志着东莞最高楼纪录诞生,由东莞本地航母级企业民盈集团刷新了东莞天际线,比之前的东莞第一高楼台商大厦高出134米.”在同学们的惊叹中,老师提出了问题:国贸中心真有这么高吗?我们能否运用所学知识测量验证一下?一周后,两个兴趣小组分享了他们各自的测量方案.
第一小组采用的是“两次测角法”:他们在国贸中心隔壁的会展中心广场上的
点测得国贸中心顶部的仰角为
,正对国贸中心前进了
米后,到达
点,在
点测得国贸中心顶部的仰角为
,然后计算出国贸中心的高度(如图).
第二小组采用的是“镜面反射法”:在国贸中心后面的新世纪豪园一幢11层楼(与国贸中心处于同一水平面,每层约3米)楼顶天台上,进行两个操作步骤:①将平面镜置于天台地面上,人后退至从镜中能看到国贸大厦的顶部位置,测量出人与镜子的距离为
米;②正对国贸中心,将镜子前移
米,重复①中的操作,测量出人与镜子的距离为
米.然后计算出国贸中心的高度(如图).
实际操作中,第一小组测得
米,
,
,最终算得国贸中心高度为
;第二小组测得
米,
米,
米,最终算得国贸中心高度为
;假设他们测量者的“眼高
”都为
米.

(1)请你用所学知识帮两个小组完成计算(参考数据:
,
,答案保留整数结果);
(2)你认为哪个小组的方案更好,说出你的理由.
第一小组采用的是“两次测角法”:他们在国贸中心隔壁的会展中心广场上的






第二小组采用的是“镜面反射法”:在国贸中心后面的新世纪豪园一幢11层楼(与国贸中心处于同一水平面,每层约3米)楼顶天台上,进行两个操作步骤:①将平面镜置于天台地面上,人后退至从镜中能看到国贸大厦的顶部位置,测量出人与镜子的距离为



实际操作中,第一小组测得











(1)请你用所学知识帮两个小组完成计算(参考数据:


(2)你认为哪个小组的方案更好,说出你的理由.
某炮兵阵地位于
点,两个观察所分别位于
,
两点,已知
为等边三角形,且
,当目标出现在
点(
,
两点位于
两侧)时,测得
,
,则炮兵阵地与目标的距离约为( )











A.![]() | B.![]() | C.![]() | D.![]() |