- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 正弦定理和余弦定理
- + 解三角形的实际应用
- 正、余弦定理在几何中的应用
- 正、余弦定理的实际应用
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
北京101中学校园内有一个“少年湖”,湖的两侧有一个音乐教室和一个图书馆,如图,若设音乐教室在A处,图书馆在B处,为测量A,B两地之间的距离,某同学选定了与A,B不共线的C处,构成△ABC,以下是测量的数据的不同方案:①测量∠A,AC,BC;②测量∠A,∠B,BC;③测量∠C,AC,BC;④测量∠A,∠C,∠B. 其中一定能唯一确定A,B两地之间的距离的所有方案的序号是_______. 

某船只在海面上向正东方向行驶了xkm迅速将航向调整为南偏西60°,然后沿着新的方向行驶了3
km,此时发现离出发点恰好3km,那么x的值为( )

A.3 | B.6 | C.3或6 | D.4或6 |
某渔船在航行中不幸遇险,发出呼叫信号,我海军舰艇在
处获悉后,立即测出该渔船在方位角(从指北方向顺时针转到目标方向线的水平角)为
,距离为15海里的
处,并测得渔船正沿方位角为
的方向,以15海里/小时的速度向小岛
靠拢,我海军舰艇立即以
海里/小时的速度前去营救,求舰艇靠近渔船所需的最少时间和舰艇的航向.







如右图,某货轮在A处看灯塔B在货轮的北偏东75°,距离为
nmile,在A处看灯塔C在货轮的北偏西30°,距离为
n mile,货轮由A处向正北航行到D处时,再看灯塔B在北偏东120°,求:

(1)A处与D处的距离;
(2)灯塔C与D处的距离.



(1)A处与D处的距离;
(2)灯塔C与D处的距离.
某小区打造休闲场地,将一块直角三角形空地ABC用一条长为16m的道路MN分成两部分(点M在边AB上).分别种植花卉和铺设草坪,其中花卉面积为
,草坪面积为
,且
,已知
,求
的最大值(本题中道路都指线段).





海洋蓝洞是地球罕见的自然地理现象,被喻为“地球留给人类保留宇宙秘密的最后遗产”,我国拥有世界上最深的海洋蓝洞,若要测量如图所示的蓝洞的口径
,
两点间的距离,现在珊瑚群岛上取两点
,
,测得
,
,
,
,则
,
两点的距离为________ .










