- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 正弦定理和余弦定理
- + 解三角形的实际应用
- 正、余弦定理在几何中的应用
- 正、余弦定理的实际应用
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
在△ABC中,a、b、c分别表示三个内角∠A、∠B、∠C的对边,如果(a2+b2)sin(A-B)=(a2-b2)sin(A+B),判断三角形的形状.
如图,△
为一个等腰三角形形状的空地,腰
的长为
(百米),底
的长为
(百米),现决定在空地内筑一条笔直的小路
(宽度不计),将该空地分成一个四边形和一个三角形,设分成的四边形和三角形的周长相等.

(1)若小路一端
为
的中点,求此时小路的长度;
(2)求分成的四边形的面积的最小值.







(1)若小路一端


(2)求分成的四边形的面积的最小值.
上海市松江区天马山上的“护珠塔”因其倾斜度超过意大利的比萨斜塔而号称“世界第一斜塔”.兴趣小组同学实施如下方案来测量塔的倾斜度和塔高:如图,记O点为塔基、P点为塔尖、点P在地面上的射影为点H.在塔身OP射影所在直线上选点A,使仰角∠HAP=45°,过O点与OA成120°的地面上选B点,使仰角∠HPB=45°(点A、B、O都在同一水平面上),此时测得∠OAB=27°,A与B之间距离为33.6米.试求:

(1)塔高(即线段PH的长,精确到0.1米);
(2)塔身的倾斜度(即PO与PH的夹角,精确到0.1°).

(1)塔高(即线段PH的长,精确到0.1米);
(2)塔身的倾斜度(即PO与PH的夹角,精确到0.1°).
如图所示,某工厂在基建中,要测定被障碍物隔开的A和P间的距离.为此,在障碍物的两侧选取两点B.C,测得
米,
米,
,
,
.

(1)求
的长和
的大小;
(2)求A和P间的距离(精确到1米).






(1)求


(2)求A和P间的距离(精确到1米).