- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 几何中的三角函数模型
- + 三角函数在生活中的应用
- 三角函数在物理学中的应用
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
以圆形摩天轮的轴心
为原点,水平方向为
轴,在摩天轮所在的平面建立直角坐标系.设摩天轮的半径为
米,把摩天轮上的一个吊篮看作一个点
,起始时点
在
的终边上,
绕
按逆时针方向作匀速旋转运动,其角速度为
(弧度/分),经过
分钟后,
到达
,记
点的横坐标为
,则
关于时间
的函数图象为( )
















A.![]() | B.![]() |
C.![]() | D.![]() |
如图一块长方形区域
,
,
,在边
的中点
处有一个可转动的探照灯,其照射角
始终为
,设
,探照灯照射在长方形
内部区域的面积为
.

(1)当
时,求
关于
的函数关系式;
(2)当
时,求
的最大值;
(3)若探照灯每9分钟旋转“一个来回”(
自
转到
,再回到
,称“一个来回”,忽略
在
及
处所用的时间),且转动的角速度大小一定,设
边上有一点
,且
,求点
在“一个来回”中被照到的时间.











(1)当



(2)当


(3)若探照灯每9分钟旋转“一个来回”(











如图,摩天轮的半径为50m,圆心O距地面的高度为65m.已知摩天轮按逆时针方向匀速转动,每30min转动一圈.游客在摩天轮的舱位转到距离地面最近的位置进舱.

(1)游客进入摩天轮的舱位,开始转动tmin后,他距离地面的高度为h,求h关于t的函数解析式;
(2)已知在距离地面超过40m的高度,游客可以观看到游乐场全景,那么在摩天轮转动一圈的过程中,游客可以观看到游乐场全景的时间是多少?

(1)游客进入摩天轮的舱位,开始转动tmin后,他距离地面的高度为h,求h关于t的函数解析式;
(2)已知在距离地面超过40m的高度,游客可以观看到游乐场全景,那么在摩天轮转动一圈的过程中,游客可以观看到游乐场全景的时间是多少?
某景区欲建造同一水平面上的两条圆形景观步道
、
(宽度忽略不计),已知
,
(单位:米),要求圆
与
、
分别相切于点
、
,
与
、
分别相切于点
、
,且
.
(1)若
,求圆
、圆
的半径(结果精确到
米);
(2)若景观步道
、
的造价分别为每米
千元、
千元,如何设计圆
、圆
的大小,使总造价最低?最低总造价为多少(结果精确到
千元)?















(1)若




(2)若景观步道







在北京召开的国际数学家大会的会标如图所示,它是由
个相同的直角三角形与中间的小正方形拼成的一个大正方形,若直角三角形中较小的锐角为
,大正方形的面积是
,小正方形的面积是
,则
( )







A.![]() | B.![]() | C.![]() | D.![]() |
根据指令
(
,
),机器人在平面上能完成下列动作,先原地旋转弧度
(
为正时,按逆时针方向旋转
,
为负时,按顺时针方向旋转
),再朝其面对的方向沿直线行走距离r;
(1)现机器人在平面直角坐标系的坐标原点,且面对x轴正方向,试给机器人下一个指令,使其移动到点
;
(2)机器人在完成该指令后,发现在点
处有一小球,正向坐标原点作匀速直线滚动,已知小球滚动的速度为机器人直线行走速度的2倍,若忽略机器人原地旋转所需的时间,问机器人最快可在何处截住小球?并给出机器人截住小球所需的指令?(结果用反三角函数表示)








(1)现机器人在平面直角坐标系的坐标原点,且面对x轴正方向,试给机器人下一个指令,使其移动到点

(2)机器人在完成该指令后,发现在点

如图①,有一个长方体形状的敞口玻璃容器,底面是边长为20cm的正方形,高为30cm,内有20cm深的溶液.现将此容器倾斜一定角度
(图②),且倾斜时底面的一条棱始终在桌面上(图①、②均为容器的纵截面).

(1)要使倾斜后容器内的溶液不会溢出,角
的最大值是多少?
(2)现需要倒出不少于
的溶液,当
时,能实现要求吗?请说明理由.


(1)要使倾斜后容器内的溶液不会溢出,角

(2)现需要倒出不少于


某海滨浴场一天的海浪高度
是时间
的函数,记作
,下表是某天各时的浪高数据:
(1)选用一个三角函数来近似描述这个海滨浴场的海浪高度
与时间
的函数关系;
(2)依据规定,当海浪高度不少于
时才对冲浪爱好者开放海滨浴场,请依据(1)的结论,判断一天内的
至
之间,有多少时间可供冲浪爱好者进行冲浪?



![]() | 0 | 3 | 6 | 9 | 12 | 15 | 18 | 21 | 24 |
![]() | 1.5 | 1.0 | 0.5 | 1.0 | 1.5 | 1.0 | 0.5 | 0.99 | 1.5 |
(1)选用一个三角函数来近似描述这个海滨浴场的海浪高度


(2)依据规定,当海浪高度不少于



在地面上同一地点观测远方匀速垂直上升的热气球,在上午10点整热气球的仰角是
,到上午10点20分的仰角变成
.请利用下表判断到上午11点整时,热气球的仰角最接近哪个度数( )


![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() |
![]() | 0.5 | 0.559 | 0.629 | 0.643 | 0.656 | 0.669 | 0.682 | 0.695 | 0.707 |
![]() | 0.866 | 0.829 | 0.777 | 0.766 | 0.755 | 0.743 | 0.731 | 0.719 | 0.707 |
![]() | 0.577 | 0.675 | 0.810 | 0.839 | 0.869 | 0.900 | 0.933 | 0.966 | 1.0 |
A.![]() | B.![]() | C.![]() | D.![]() |