- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 正弦函数的图象
- 余弦函数的图象
- 正弦函数的单调性
- 正弦函数的定义域、值域和最值
- 正弦函数的奇偶性
- 正弦函数的周期性
- 正弦函数的对称性
- 余弦函数的单调性
- 余弦函数的定义域、值域和最值
- 余弦函数的奇偶性
- 余弦函数的周期性
- 余弦函数的对称性
- 正切函数的图象
- 正切函数的单调性
- 正切函数的奇偶性
- 正切函数的周期性
- 正切函数的对称性
- 正切函数的定义域、值域和最值
- 正(余)弦型三角函数的图象
- 正切型三角函数的图象
- + 三角函数图象的综合应用
- 识别三角函数的图象(含正、余弦,正切)
- 三角函数图象的综合应用
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
已知向量
,
,设函数
.将函数
的图象向右平移
个单位,得到函数
的图象.
(1)若
,求函数
的值域;
(2)已知
分别为
中角
的对边,且满足
,
,
,
,求
的面积.






(1)若


(2)已知








已知向量
,
,函数
,
.
(1)若
的最小值为-1,求实数
的值;
(2)是否存在实数
,使函数
,
有四个不同的零点?若存在,求出
的取值范围;若不存在,请说明理由.




(1)若


(2)是否存在实数




已知函数
,任取
,定义集合:
,点
,
满足
.
设
分别表示集合
中元素的最大值和最小值,记
.则
(1) 若函数
,则
=______;
(2)若函数
,则
的最小正周期为______.






设



(1) 若函数


(2)若函数

