- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 正弦函数的图象
- 余弦函数的图象
- 正弦函数的单调性
- 正弦函数的定义域、值域和最值
- 正弦函数的奇偶性
- 正弦函数的周期性
- 正弦函数的对称性
- 余弦函数的单调性
- 余弦函数的定义域、值域和最值
- 余弦函数的奇偶性
- 余弦函数的周期性
- 余弦函数的对称性
- 正切函数的图象
- 正切函数的单调性
- 正切函数的奇偶性
- 正切函数的周期性
- 正切函数的对称性
- 正切函数的定义域、值域和最值
- 正(余)弦型三角函数的图象
- 正切型三角函数的图象
- + 三角函数图象的综合应用
- 识别三角函数的图象(含正、余弦,正切)
- 三角函数图象的综合应用
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
已知函数
.
(1)若函数
的最大值为6,求常数
的值;
(2)若函数
有两个零点
和
,求
的取值范围,并求
和
的值;
(3)在(1)的条件下,若
,讨论函数
的零点个数.

(1)若函数


(2)若函数






(3)在(1)的条件下,若


已知函数
(1)用“五点法”作出
在长度为一个周期的闭区间上的简图;
(2)写出
的对称中心与单调递增区间;
(3)求
的最大值以及取得最大值时x的集合.

(1)用“五点法”作出

(2)写出

(3)求

