- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- + 弧长的有关计算
- 扇形面积的有关计算
- 扇形中的最值问题
- 扇形弧长公式与面积公式的应用
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
已知相互啮合的两个齿轮,大轮有48齿,小轮有20齿,当大轮转动一周时,小轮转动的角是________度,即________rad.如果大轮的转速为
(转/分),小轮的半径为10.5cm,那么小轮周上一点每1s转过的弧长是________.

如图,现有一个
为圆心角、湖岸
与
为半径的扇形湖面
. 现欲在弧
上取不同于
的点
,用渔网沿着弧
(弧
在扇形
的弧
上)、半径
和线段
(其中
),在扇形湖面内各处连个养殖区域——养殖区域I和养殖区域II. 若
,
,
. 求所需渔网长度(即图中弧
、半径
和线段
长度之和)的最大值为______. 





















如图,点
为某沿海城市的高速公路出入口,直线
为海岸线,
,
,
是以
为圆心,半径为
的圆弧型小路.该市拟修建一条从
通往海岸的观光专线
,其中
为
上异于
的一点,
与
平行,设
.

(1)证明:观光专线
的总长度随
的增大而减小;
(2)已知新建道路
的单位成本是翻新道路
的单位成本的2倍.当
取何值时,观光专线
的修建总成本最低?请说明理由.
















(1)证明:观光专线


(2)已知新建道路




某企业欲做一个介绍企业发展史的铭牌,铭牌的截面形状是如图所示的扇形环面(由扇形
挖去扇形
后构成的).已知
,线段
、
与弧
、弧
的长度之和为30米,圆心角为
弧度.

(1)求
关于
的函数解析式;
(2)记铭牌的截面面积为
,试问
取何值时,
的值最大?并求出最大值.









(1)求


(2)记铭牌的截面面积为



如图,设点A是单位圆上的一定点,动点P从A出发在圆上按逆时针方向旋转一周,点P所转过的弧AP的长为l,弦AP的长为d,则
的图象大致是( )



A.![]() | B.![]() | C.![]() | D.![]() |