- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- + 弧长的有关计算
- 扇形面积的有关计算
- 扇形中的最值问题
- 扇形弧长公式与面积公式的应用
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
解答下列各题:
(1)已知扇形的周长为10cm,面积为4cm2,求扇形圆心角的弧度数.
(2)已知一扇形的圆心角是72°,半径等于20cm,求扇形的面积.
(3)已知一扇形的周长为40cm,求它的半径和圆心角取什么值时,才能使扇形的面积最大?最大面积是多少?
(1)已知扇形的周长为10cm,面积为4cm2,求扇形圆心角的弧度数.
(2)已知一扇形的圆心角是72°,半径等于20cm,求扇形的面积.
(3)已知一扇形的周长为40cm,求它的半径和圆心角取什么值时,才能使扇形的面积最大?最大面积是多少?
已知一扇形的圆心角是
,所在圆的半径是R.
(1)若
,
,求扇形的弧长及该弧长所在的弓形面积;
(2)若扇形的周长是30cm,当
为多少弧度时,该扇形有最大面积?

(1)若


(2)若扇形的周长是30cm,当

如图,已知长为
,宽为
的长方形在桌面上作无滑动翻滚,翻滚到第四次时被小木块挡住,此时长方形的底边与桌面所成的角为
,求点
走过的路程及走过的弧所在扇形的总面积.





《九章算术》是中国古代第一部数学专著,成于公元一世纪左右,系统总结了战国、秦、汉时期的数学成就.其中《方田》一章中记载了计算弧田(弧田就是由圆弧和其所对弦所围成弓形)的面积所用的经验公式:弧田面积=
(弦×矢+矢×矢),公式中“弦”指圆弧所对弦长,“矢”等于半径长与圆心到弦的距离之差.按照上述经验公式计算所得弧田面积与其实际面积之间存在误差.现有圆心角为
,弦长为
的弧田.其实际面积与按照上述经验公式计算出弧田的面积之间的误差为( )平方米.(其中
,
)





A.15 | B.16 | C.17 | D.18 |