刷题首页
题库
高中数学
题干
某地拟规划种植一批芍药,为了美观,将种植区域(区域Ⅰ)设计成半径为
的扇形
,中心角
.为方便观赏,增加收入,在种植区域外围规划观赏区(区域Ⅱ)和休闲区(区域Ⅲ),并将外围区域按如图所示的方案扩建成正方形
,其中点
,
分别在边
和
上.已知种植区、观赏区和休闲区每平方千米的年收入分别是10万元、20万元、20万元.
(1)要使观赏区的年收入不低于5万元,求
的最大值;
(2)试问:当
为多少时,年总收入最大?
上一题
下一题
0.99难度 解答题 更新时间:2020-01-13 09:11:17
答案(点此获取答案解析)
同类题1
如图,现在要在一块半径为1
m
.圆心角为60°的扇形纸板
AOB
上剪出一个平行四边形
MNPQ
,使点
P
在
AB
弧上,点
Q
在
OA
上,点
M
,
N
在
OB
上,设∠
BOP
=
θ
,Y
MNPQ
的面积为
S
.
(1)求
S
关于
θ
的函数关系式;
(2)求
S
的最大值及相应
θ
的值
同类题2
如图,在半径为
(单位:
)的半圆形(
为圆心)铁皮上截取一块矩形材料
,其顶点
在直径上,顶点
在圆周上,则矩形
面积的最大值为
____
(单位:
).
同类题3
为宣传平潭综合试验区的“国际旅游岛”建设,试验区某旅游部门开发了一种旅游纪念产品,每件产品的成本是12元,销售价是16元,月平均销售
件。后该旅游部门通过改进工艺,在保证产品成本不变的基础上,产品的质量和技术含金量提高,于是准备将产品的售价提高。经市场分析,如果产品的销售价提高的百分率为
,那么月平均销售量减少的百分率为
。记改进工艺后,旅游部门销售该纪念品的月平均利润是
(元).
(1)写出
与
的函数关系式;
(2)改进工艺后,确定该纪念品的售价,使该旅游部门销售该纪念品的月平均利润最大.
同类题4
某地西红柿从2 月1日起开始上市,通过市场调查,得到西红柿种植成本Q(单位:元/100 kg)与上市时间t(单位:天)的数据如下表:
时间t
60
100
180
种植成本Q
116
84
116
根据上表数据,从下列函数中选取一个函数描述西红柿种植成本Q与上市时间t的变化关系.
Q=at+b,Q=at
2
+bc+c,Q=a·b
t
,Q=a·log
b
t
利用你选取的函数,求得:
(1)西红柿种植成本最低时的上市天数是________.
(2)最低种植成本是________(元/100kg).
同类题5
某农贸市场出售西红柿,当价格上涨时,供给量相应增加,而需求量相应减少,具体结果如下表:
单价(元/kg)
2
2.4
2.8
3.2
3.6
4
供给量(1000kg)
50
60
70
75
80
90
表1 市场供给表
单价(元/kg)
4
3.4
2.9
2.6
2.3
2
需求量(1000kg)
50
60
65
70
75
80
表2 市场需求表
根据以上提供的信息,市场供需平衡点(即供给量和需求量相等时的单价)大约为( )
A.2.3元
B.
元
C.
元
D.2.9元
相关知识点
函数与导数
函数的应用
函数模型及其应用
函数模型的应用实例
建立拟合函数模型解决实际问题
利润最大问题