- 集合与常用逻辑用语
- 函数与导数
- 函数最值与极值的关系辨析
- 由导数求函数的最值
- 已知函数最值求参数
- + 函数单调性、极值与最值的综合应用
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
如图,曲线
是一条居民平时散步的小道,小道两旁是空地,当地政府为了丰富居民的业余生活,要在小道两旁规划出两地来修建休闲活动场所,已知空地
和规划的两块用地(阴影区域)都是矩形,
,
,
,若以
所在直线为
轴,
为原点,建立如图平面直角坐标系,则曲线
的方程为
,记
,规划的两块用地的面积之和为
.(单位:)

(1)求
关于
的函数
;
(2)求
的最大值.













(1)求



(2)求

已知函数
的图象与函数
的图象有三个不同的交点
、
、
,其中
.给出下列四个结论: ①
;②
;③
;④
.其中,正确结论的个数有( )个










A.1 | B.2 | C.3 | D.4 |
已知函数
(k为常数),函数
,(a为常数,且
).
(1)若函数
有且只有1个零点,求k的取值的集合.
(2)当(1)中的k取最大值时,求证:
.



(1)若函数

(2)当(1)中的k取最大值时,求证:
