- 集合与常用逻辑用语
- 函数与导数
- 利用导数研究函数的单调性
- 利用导数研究函数的极值
- + 利用导数研究函数的最值
- 函数最值与极值的关系辨析
- 由导数求函数的最值
- 已知函数最值求参数
- 函数单调性、极值与最值的综合应用
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
已知f(x)=ln x-
+
,g(x)=-x2-2ax+4,若对任意的x1∈(0,2],存在x2∈[1,2],使得f(x1)≥g(x2)成立,则a的取值范围是( )


A.![]() | B.![]() | C.![]() | D.![]() |
设函数f(x)=ax﹣
﹣2lnx.
(Ⅰ)若f(x)在x=2时有极值,求实数a的值和f(x)的极大值;
(Ⅱ)若f(x)在定义域上是减函数,求实数a的取值范围.

(Ⅰ)若f(x)在x=2时有极值,求实数a的值和f(x)的极大值;
(Ⅱ)若f(x)在定义域上是减函数,求实数a的取值范围.