- 集合与常用逻辑用语
- 函数与导数
- 用导数判断或证明已知函数的单调性
- 利用导数求函数的单调区间
- 由函数的单调区间求参数
- + 由函数在区间上的单调性求参数
- 函数与导函数图象之间的关系
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
设
,函数
,其中
是自然对数的底数.
(1)求
时,求
在
上的最小值;
(2)求函数
在R上的单调区间;
(3)若
为常数,且
是否存在实数
,使得对于任意
,
恒成立,若存在,求出
的范围,若不存在,说明理由.



(1)求



(2)求函数

(3)若






已知函数
.
(I)若点P(0,-2)在函数f(x)的图象上,求a的值和函数f(x)的极小值;
(II)若函数f(x)在(-1,1)上是单调递减函数,求a的最大值

(I)若点P(0,-2)在函数f(x)的图象上,求a的值和函数f(x)的极小值;
(II)若函数f(x)在(-1,1)上是单调递减函数,求a的最大值
如果函数
在区间(1,4)上为减函数,在(6,+∞)上为增函数,则实数a的取值范围是( )

A.a≤5 | B.5≤a≤7 | C.a≥7 | D.a≤5或a≥7 |