- 集合与常用逻辑用语
- 函数与导数
- 用导数判断或证明已知函数的单调性
- + 利用导数求函数的单调区间
- 由函数的单调区间求参数
- 由函数在区间上的单调性求参数
- 函数与导函数图象之间的关系
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
已知函数
(
,
是自然对数的底数).
(1)若函数
在点
处的切线方程为
,试确定函数
的单调区间;
(2)①当
,
时,若对于任意
,都有
恒成立,求实数
的最小值;②当
时,设函数
,是否存在实数
,使得
?若存在,求出
的取值范围;若不存在,说明理由.



(1)若函数




(2)①当










如果函数
满足
且
是它的零点,则函数
是“有趣的”,例如
就是“有趣的”,已知
是“有趣的”.
(1)求出b、c并求出函数
的单调区间;
(2)若对于任意正数x,都有
恒成立,求参数k的取值范围.






(1)求出b、c并求出函数

(2)若对于任意正数x,都有
