- 集合与常用逻辑用语
- 函数与导数
- 导数的概念和几何意义
- 导数的计算
- + 导数在研究函数中的作用
- 利用导数研究函数的单调性
- 利用导数研究函数的极值
- 利用导数研究函数的最值
- 导数的综合应用
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
若函数y=f(x)在区间D上是增函数,且函数y=
在区间D上是减函数,则称函数f(x)是区间D上的“H函数”.对于命题:
①函数f(x)=-x+
是区间(0,1)上的“H函数”;
②函数g(x)=
是区间(0,1)上的“H函数”.下列判断正确的是( )

①函数f(x)=-x+

②函数g(x)=

A.![]() ![]() | B.![]() ![]() |
C.![]() ![]() | D.![]() ![]() |
已知函数
(
为自然对数的底数),
是
的导函数.
(Ⅰ)当
时,求证
;
(Ⅱ)是否存在正整数
,使得
对一切
恒成立?若存在,求出
的最大值;若不存在,说明理由.




(Ⅰ)当


(Ⅱ)是否存在正整数



