- 集合与常用逻辑用语
- 函数与导数
- 求曲线切线的斜率(倾斜角)
- 求在曲线上一点处的切线方程
- 求过一点的切线方程
- 已知切线(斜率)求参数
- + 两条切线平行、垂直、重合(公切线)问题
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
已知函数f(x)=x3-3ax+e,g(x)=1-lnx,其中e为自然对数的底数.
(I)若曲线y=f(x)在点(1,f(1))处的切线与直线l:x+2y=0垂直,求实数a的值;
(II)设函数F(x)=-x[g(x)+x-2],若F(x)在区间(m,m+1)(m∈Z)内存在唯一的极值点,求m的值;
(III)用max{m,n}表示m,n中的较大者,记函数h(x)=max{f(x),g(x)}(x>0). 若函数h(x)在(0,+∞)上恰有2个零点,求实数a的取值范围.
已知
其中
.
(1)若
与
的图像在交点(2,
)处的切线互相垂直,求
的值;
(2)若
是函数
的一个极值点,
和1是
的两个零点,且
,求
.


(1)若




(2)若






已知函数f(x)=
,若曲线y=f(x)在点Pi(xi,f(xi))(i=1,2,3,其中x1,x2,x3互不相等)处的切线互相平行,则a的取值范围是______.

已知函数
,
.
(Ⅰ)若直线
与曲线
和
分别交于
两点.设曲线
在点
处的切线为
,
在点
处的切线为
.
(ⅰ)当
时,若
,求
的值;
(ⅱ)若
,求
的最大值;
(Ⅱ)设函数
在其定义域内恰有两个不同的极值点
,
,且
.
若
,且
恒成立,求
的取值范围.



(Ⅰ)若直线











(ⅰ)当




(ⅱ)若


(Ⅱ)设函数




若



已知函数f(x)=lnx2
,(a∈R,e为自然对数的底数).
(Ⅰ)求函数f(x)的递增区间;
(Ⅱ)当a=1时,过点P(0,t)(t∈R)作曲线y=f(x)的两条切线,设两切点为
(
,f(
)),
(
,f(
))(
≠
),求证:
=0.

(Ⅰ)求函数f(x)的递增区间;
(Ⅱ)当a=1时,过点P(0,t)(t∈R)作曲线y=f(x)的两条切线,设两切点为









已知函数
,(
),
(1)若曲线
与曲线
在它们的交点(1,c)处具有公共切线,求a,b的值
(2)当
时,若函数
的单调区间,并求其在区间(-∞,-1)上的最大值。



(1)若曲线


(2)当


已知函数
,
.
(1)若
,则
,
满足什么条件时,曲线
与
在
处总有相同的切线?
(2)当
时,求函数
的单调减区间;
(3)当
时,若
对任意的
恒成立,求
的取值的集合.


(1)若






(2)当


(3)当



