- 集合与常用逻辑用语
- 函数与导数
- + 导数的概念和几何意义
- 平均变化率
- 导数的几何意义
- 导数的计算
- 导数在研究函数中的作用
- 导数的综合应用
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
已知函数f(x)=﹣alnx+
+x(a≠0)
(I)若曲线y=f(x)在点(1,f(1)))处的切线与直线x﹣2y=0垂直,求实数a的值;
(Ⅱ)讨论函数f(x)的单调性;
(Ⅲ)当a∈(﹣∞,0)时,记函数f(x)的最小值为g(a),求证:g(a)≤﹣e﹣4.

(I)若曲线y=f(x)在点(1,f(1)))处的切线与直线x﹣2y=0垂直,求实数a的值;
(Ⅱ)讨论函数f(x)的单调性;
(Ⅲ)当a∈(﹣∞,0)时,记函数f(x)的最小值为g(a),求证:g(a)≤﹣e﹣4.
已知函数f(x)=alnx,g(x)=x2.其中x∈R.
(Ⅰ)若曲线y=f(x)与y=g(x)在x=1处的切线相互平行,求两平行直线间的距离;
(Ⅱ)若f(x)≤g(x)﹣1对任意x>0恒成立,求实数a的值;
(Ⅲ)当a<0时,对于函数h(x)=f(x)﹣g(x)+1,记在h(x)图象上任取两点A、B连线的斜率为kAB,若|kAB|≥1,求a的取值范围.
(Ⅰ)若曲线y=f(x)与y=g(x)在x=1处的切线相互平行,求两平行直线间的距离;
(Ⅱ)若f(x)≤g(x)﹣1对任意x>0恒成立,求实数a的值;
(Ⅲ)当a<0时,对于函数h(x)=f(x)﹣g(x)+1,记在h(x)图象上任取两点A、B连线的斜率为kAB,若|kAB|≥1,求a的取值范围.
在曲线y=x2+1的图象上取一点(1,2)及邻近一点(1+△x,2+△y),则△y:△x为( )
A.△x+![]() | B.△x﹣![]() | C.△x+2 | D.2+△x﹣![]() |
已知函数f(x)=x3+ax2+bx+c,曲线y=f(x)在点x=0处的切线为l:4x+y﹣5=0,若x=﹣2时,y=f(x)有极值.
(1)求a,b,c的值;
(2)求y=f(x)在[﹣3,1]上的最大值和最小值.
(1)求a,b,c的值;
(2)求y=f(x)在[﹣3,1]上的最大值和最小值.
已知函数f(x)=x﹣alnx(a∈R).
(Ⅰ)当a=2时,求曲线f(x)在x=1处的切线方程;
(Ⅱ)设函数h(x)=f(x)+
,求函数h(x)的单调区间;
(Ⅲ)若g(x)=﹣
,在[1,e](e=2.71828…)上存在一点x0,使得f(x0)≤g(x0)成立,求a的取值范围.
(Ⅰ)当a=2时,求曲线f(x)在x=1处的切线方程;
(Ⅱ)设函数h(x)=f(x)+

(Ⅲ)若g(x)=﹣
