- 集合与常用逻辑用语
- 函数与导数
- + 导数的概念和几何意义
- 平均变化率
- 导数的几何意义
- 导数的计算
- 导数在研究函数中的作用
- 导数的综合应用
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
对于函数f(x)=ax3,(a≠0)有以下说法:
①x=0是f(x)的极值点.
②当a<0时,f(x)在(﹣∞,+∞)上是减函数.
③f(x)的图象与(1,f(1))处的切线必相交于另一点.
④若a>0且x≠0则f(x)+f(
)有最小值是2a.
其中说法正确的序号是 .
①x=0是f(x)的极值点.
②当a<0时,f(x)在(﹣∞,+∞)上是减函数.
③f(x)的图象与(1,f(1))处的切线必相交于另一点.
④若a>0且x≠0则f(x)+f(

其中说法正确的序号是 .
如果f′(x)是二次函数,且f′(x)的图象开口向上,顶点坐标为
,那么曲线y=f(x)上任一点的切线的倾斜角α的取值范围是( )

A.![]() | B.![]() | C.![]() | D.![]() |