- 集合与常用逻辑用语
- 函数与导数
- + 导数的概念和几何意义
- 平均变化率
- 导数的几何意义
- 导数的计算
- 导数在研究函数中的作用
- 导数的综合应用
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
已知函数f(x)
x3+ax2﹣bx+1(x∈R,a,b为实数)有极值,且在x=1处的切线与直线x﹣y+1=0平行.
(1)求实数a的取值范围;
(2)是否存在实数a,使得函数f(x)的极小值为1,若存在,求出实数a的值;若不存在,请说明理由;
(3)设a
令g(x)
3,x∈(0,+∞),求证:gn(x)﹣xn
2n﹣2(n∈N+).

(1)求实数a的取值范围;
(2)是否存在实数a,使得函数f(x)的极小值为1,若存在,求出实数a的值;若不存在,请说明理由;
(3)设a



物体沿直线运动过程中,位移s与时间t的关系式是
. 我们计算在
的附近区间
内的平均速度
,当
趋近于0时,平均速度
趋近于确定的值,即瞬时速度,由此可得到
时的瞬时速度大小为 .






