- 集合与常用逻辑用语
- 函数与导数
- 利用二次函数模型解决实际问题
- 分段函数模型的应用
- + 分式型函数模型的应用
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
某商品进货价每件50元,销售价格为每件
元,据市场调查,当销售价格
时,每天可售出
件,每天获得的利润为y元.
(1)写出
关于
的函数表达式;
(2)若要每天获得的利润最多,则售价应定为每件多少元?



(1)写出


(2)若要每天获得的利润最多,则售价应定为每件多少元?
某公司生产一种仪器的固定成本为10000元,每生产一台仪器需增加投入200元,已知总收益满足函数
.
其中x是仪器的月产量(单位:台).
(1)将利润表示为月产量
的函数
;
(2)当月产量x为何值时,公司所获利润最大?最大利润为多少元?
(总收益=总成本﹢利润)

其中x是仪器的月产量(单位:台).
(1)将利润表示为月产量


(2)当月产量x为何值时,公司所获利润最大?最大利润为多少元?
(总收益=总成本﹢利润)
“足寒伤心,民寒伤国”,精准扶贫是巩固温饱成果、加快脱贫致富、实现中华民族伟大“中国梦”的重要保障.某地政府在对石山区乡镇企业实施精准扶贫的工作中,准备投入资金将当地农产品进行二次加工后进行推广促销,预计该批产品销售量
万件(生产量与销售量相等)与推广促销费
万元之间的函数关系为
(其中推广促销费不能超过3万元).已知加工此批农产品还要投入成本
万元(不包含推广促销费用),若加工后的每件成品的销售价格定为
元/件.
(1)试将该批产品的利润
万元表示为推广促销费
万元的函数;(利润
销售额
成本
推广促销费)
(2)当推广促销费投入多少万元时,此批产品的利润最大?最大利润为多少?





(1)试将该批产品的利润





(2)当推广促销费投入多少万元时,此批产品的利润最大?最大利润为多少?
如图,长方形物体E在雨中沿面P(面积为S)的垂直方向作匀速移动,速度为
,雨速沿E移动方向的分速度为
.E移动时单位时间内的淋雨量包括两部分:(1)P或P的平行面(只有一个面淋雨)的淋雨量,假设其值与
×S成正比,比例系数为
;(2)其它面的淋雨量之和,其值为
,记
为E移动过程中的总淋雨量,当移动距离d=100,面积S=
时.

(1)写出
的表达式
(2)设0<v≤10,0<c≤5,试根据c的不同取值范围,确定移动速度
,使总淋雨量
最少.








(1)写出

(2)设0<v≤10,0<c≤5,试根据c的不同取值范围,确定移动速度


网店和实体店各有利弊,两者的结合将在未来一段时期内,成为商业的一个主要发展方向.某品牌行车记录仪支架销售公司从
年
月起开展网络销售与实体店体验安装结合的销售模式.根据几个月运营发现,产品的月销量
万件与投入实体店体验安装的费用
万元之间满足
函数关系式.已知网店每月固定的各种费用支出为
万元,产品每
万件进货价格为
万元,若每件产品的售价定为“进货价的
”与“平均每件产品的实体店体验安装费用的一半”之和,则该公司最大月利润是________万元.









为了缓解城市交通压力,某市市政府在市区一主要交通干道修建高架桥,两端的桥墩现已建好,已知这两桥墩相距m米,“余下的工程”只需建两端桥墩之间的桥面和桥墩.经测算,一个桥墩的工程费用为256万元;距离为x米的相邻两墩之间的桥面工程费用为(2+
)x万元.假设桥墩等距离分布,所有桥墩都视为点,且不考虑其他因素.记“余下工程”的费用为y万元.
(1)试写出工程费用y关于x的函数关系式;
(2)当m=640米时,需新建多少个桥墩才能使工程费用y最小?并求出其最小值.

(1)试写出工程费用y关于x的函数关系式;
(2)当m=640米时,需新建多少个桥墩才能使工程费用y最小?并求出其最小值.
为更好实施乡村振兴战略,加强村民对本村事务的参与和监督,根据《村委会组织法》,某乡镇准备在各村推选村民代表.规定各村每
户推选
人,当全村户数除以
所得的余数大于
时再增加
人.那么,各村可推选的人数
与该村户数
之间的函数关系用取整函数
(
表示不大于
的最大整数)可以表示为( )










A.![]() | B.![]() | C.![]() | D.![]() |
我校第二教学楼在建造过程中,需建一座长方体形的净水处理池,该长方体的底面积为200平方米,池的深度为5米,如图,该处理池由左右两部分组成,中间是一条间隔的墙壁,池的外围周壁建造单价为400元/平方米,中间的墙壁(不需考虑该墙壁的左右两面)建造单价为100元/平方米,池底建造单价为60元/平方米,池壁厚度忽略不计,问净水池的长
为多少时,可使总造价最低?最低价为多少?


提高过江大桥的车辆通行能力可改善整个城市的交通状况,一般情况下,大桥上的车流速度
(单位:千米/小时)是车流密度
(单位:辆/千米)的函数,当桥上的车流密度达到200辆/千米时,造成堵塞,此时车流速度为0;当车流密度小于30辆/千米时,车流速度为68千米/小时,研究表明:当
时,车流速度
与车流密度
之间满足函数关系式:
,(
为常数)。
(1)当
时,求函数
的解析式;
(2)当车流密度
多大时,车流量(单位时间内通过桥上某观测点的车辆数,单位:辆/小时)
可以达到最大?并求出最大值。







(1)当


(2)当车流密度


党的“十八大”之后,做好农业农村工作具有特殊重要的意义.国家为了更 好地服务于农民、开展社会主义新农村工作,派调查组到农村某地区考察.该地区有100户农 民,且都从事蔬菜种植.据了解,平均每户的年收入为6万元.为了调整产业结构,当地政府决 定动员部分农民从事蔬菜加工.据统计,若动员
户农民从事蔬菜加工,则剩下的继续 从事蔬菜种植的农民平均每户的年收入有望提高
,而从事蔬菜加工的农民平均每户的年收入为
万元.
(1)在动员
户农民从事蔬菜加工后,要使剩下
户从事蔬菜种植的所有农民总年收 入不低于动员前100户从事蔬菜种植的所有农民年总年收入,求
的取值范围;
(2)在(1)的条件下,要使这
户农民从事蔬菜加工的总年收入始终不高于
户从事蔬菜种植的所有农民年总年收入,求
的最大值.(参考数据:
)



(1)在动员



(2)在(1)的条件下,要使这



