某环境保护部门对某处的环境状况用“污染指数”来监测,据测定,该处的“污染指数”与附近污染源的强度和距离之比成正比,比例系数为常数,现已知相距两家化工厂(污染源)的污染强度分别为1和,它们连线段上任意一点处的污染指数等于两化工厂对该处的污染指数之和,设
(1)试将表示为的函数,指出其定义域;
(2)当时,处的“污染指数”最小,试求化工厂的污染强度的值;
当前题号:1 | 题型:解答题 | 难度:0.99
已知正三棱柱的侧棱长为4,底面边长为2,用一个平面截此棱柱,与侧棱分别交于点,若为直角三角形,则面积的最大值为(   )
A.3B.C.D.
当前题号:2 | 题型:单选题 | 难度:0.99
市场上有一种新型的强力洗衣液,特点是去污速度快.已知每投放,且)个单位的洗衣液在一定量水的洗衣机中,它在水中释放的浓度(克/升)随着时间(分钟)变化的函数关系式近似为,其中.若多次投放,则某一时刻水中的洗衣液浓度为每次投放的洗衣液在相应时刻所释放的浓度之和.根据经验,当水中洗衣液的浓度不低于(克/升)时,它才能起到有效去污的作用.
(1)当一次投放个单位的洗衣液时,求在分钟时,洗衣液在水中释放的浓度.
(2)在(1)的情况下,即一次投放个单位的洗衣液,则有效去污时间可达几分钟?
(3)若第一次投放个单位的洗衣液,分钟后再投放个单位的洗衣液,请你写出第二次投放之后洗衣液在水中释放的浓度(克/升)与时间(分钟)的函数关系式,求出最低浓度,并判断接下来的四分钟是否能够持续有效去污.
当前题号:3 | 题型:解答题 | 难度:0.99
为响应市政府提出的以新旧动能转换为主题的发展战略,某公司花费100万元成本购买了1套新设备用于扩大生产,预计该设备每年收入100万元,第一年该设备的各种消耗成本为8万元,且从第二年开始每年比上一年消耗成本增加8万元.
(1)求该设备使用x年的总利润y(万元)与使用年数xx∈N*)的函数关系式(总利润=总收入﹣总成本);
(2)这套设备使用多少年,可使年平均利润最大?并求出年平均利润的最大值.
当前题号:4 | 题型:解答题 | 难度:0.99
如图,半圆是某爱国主义教育基地一景点的平面示意图,半径的长为百米.为了保护景点,基地管理部门从道路上选取一点,修建参观线路,且,均与半圆相切,四边形是等腰梯形,设百米,记修建每百米参观线路的费用为万元,经测算.

(1)用表示线段的长;
(2)求修建参观线路的最低费用.
当前题号:5 | 题型:解答题 | 难度:0.99