- 集合与常用逻辑用语
- 函数与导数
- 几类不同增长的函数模型
- + 常见的函数模型(1)——二次、分段函数
- 利用二次函数模型解决实际问题
- 分段函数模型的应用
- 分式型函数模型的应用
- 常见的函数模型(2)——指数、对数、幂函数
- 函数模型的应用实例
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
2019年是中华人民共和国建国70周年.建国70年来,我们始终坚持保护环境和节约资源,坚持推进生态文明建设。某市政府也越来越重视生态系统的重建和维护,若市财政下拨一项专款100百万元,分别用于植绿护绿和处理污染两个生态维护项目,植绿护绿项目带来的生态收益可表示为投放资金
单位:百万元
的函数
单位:百万元
:
,处理污染项目带来的生态收益可表示为投放资金
单位:百万元
的函数
单位:百万元
:
.
(1)设分配给植绿护绿项目的资金为
百万元
,则两个生态项目带来的收益总和为y,写出y关于x的函数解析式和定义域;
(2)试求出y的最大值,并求出此时对两个生态项目的投资分别为多少.










(1)设分配给植绿护绿项目的资金为


(2)试求出y的最大值,并求出此时对两个生态项目的投资分别为多少.
某商场对顾客实行购物优惠活动规定,一次购物付款总额:
(1)如果标价总额不超过200元,则不给予优惠;
(2)如果标价总额超过200元但不超过500元,则按标价总额给予9折优惠;
(3)如果标价总额超过500元,其500元内的按第(2)条给予优惠,超过500元的部分给予8折优惠.
某人两次去购物,分别付款180元和423元,假设他一次性购买上述两次同样的商品,则应付款( )
(1)如果标价总额不超过200元,则不给予优惠;
(2)如果标价总额超过200元但不超过500元,则按标价总额给予9折优惠;
(3)如果标价总额超过500元,其500元内的按第(2)条给予优惠,超过500元的部分给予8折优惠.
某人两次去购物,分别付款180元和423元,假设他一次性购买上述两次同样的商品,则应付款( )
A.550元 | B.560元 | C.570元 | D.580元 |
2019年滕州某企业计划引进新能源汽车生产设备,通过市场分析,全年需投入固定成本2500万元.每生产
(百辆)新能源汽车,需另投入成本
万元,且
.由市场调研知,每辆车售价5万元,且生产的车辆当年能全部销售完.
(1)求出2019年的利润
(万元)关于年产量
(百辆)的函数关系式;(利润=销售-成本)
(2)2019年产量为多少百辆时,企业所获利润最大?并求出最大利润.



(1)求出2019年的利润


(2)2019年产量为多少百辆时,企业所获利润最大?并求出最大利润.
某公司共有60位员工,为提高员工的业务技术水平,公司聘请专业培训机构进行培训.培训的总费用由两部分组成:一部分是给每位参加员工支付200元的培训材料费;另一部分是给培训机构缴纳的培训费.若参加培训的员工人数不超过30人,则培训机构收取每位员工每人培训费800元;若参加培训的员工人数超过30人,则每超过1人,人均培训费减少20元.设公司参加培训的员工人数为
人,此次培训的总费用为
元.
(1)求出
与
之间的函数关系式;
(2)请你预算:公司此次培训的总费用最多需要多少元?


(1)求出


(2)请你预算:公司此次培训的总费用最多需要多少元?
某乡镇为了进行美丽乡村建设,规划在长为10千米的河流
的一侧建一条观光带,观光带的前一部分为曲线段
,设曲线段
为函数
,
(单位:千米)的图象,且曲线段的顶点为
;观光带的后一部分为线段
,如图所示.

(1)求曲线段
对应的函数
的解析式;
(2)若计划在河流
和观光带
之间新建一个如图所示的矩形绿化带
,绿化带由线段
构成,其中点
在线段
上.当
长为多少时,绿化带的总长度最长?








(1)求曲线段


(2)若计划在河流







共享单车给市民出行带来了诸多便利,某公司购买了一批单车投放到某地给市民使用.据市场分析,每辆单车的营运累计收入
(单位:元)与营运天数
满足
.
(1)要使营运累计收入高于800元,求营运天数的取值范围;
(2)每辆单车营运多少天时,才能使每天的平均营运收入最大?



(1)要使营运累计收入高于800元,求营运天数的取值范围;
(2)每辆单车营运多少天时,才能使每天的平均营运收入最大?
某种产品的成本是120元/件,试销阶段每件产品的售价x(元)与产品的日销售量y(件)之间的关系如下表所示:
若日销售量y是销售价x的一次函数,那么,要使每天所获得的利润最大,每件产品的销售价应定为多少元?此时每天的销售利润是多少?
x/元 | 130 | 150 | 165 |
y/件 | 70 | 50 | 35 |
若日销售量y是销售价x的一次函数,那么,要使每天所获得的利润最大,每件产品的销售价应定为多少元?此时每天的销售利润是多少?
近年来,中美贸易摩擦不断.特别是美国对我国华为的限制.尽管美国对华为极力封锁,百般刁难,并不断加大对各国的施压,拉拢他们抵制华为5G,然而这并没有让华为却步.华为在2018年不仅净利润创下记录,海外增长同样强劲.今年,我国华为某一企业为了进一步增加市场竞争力,计划在2020年利用新技术生产某款新手机.通过市场分析,生产此款手机全年需投入固定成本250万,每生产
(千部)手机,需另投入成本
万元,且
,由市场调研知,每部手机售价0.7万元,且全年内生产的手机当年能全部销售完.
(
)求出2020年的利润
(万元)关于年产量
(千部)的函数关系式,(利润=销售额—成本);
2020年产量为多少(千部)时,企业所获利润最大?最大利润是多少?



(




商品的销售价格与销售量密切相关,为更精准地为商品确定最终售价,商家对商品A按以下单价进行试售,得到部分的数据如下:
(1)求销量
关于
的线性回归方程;
(2)预计今后的销售中,销量与单价服从(1)中的线性回归方程,已知每件商品
的成本是
元,为了获得最大利润,商品
的单价应定为多少元?(结果保留整数)
(参考数据:
,
,
)(参考公式:
,
)
单价![]() | ![]() | ![]() | ![]() | ![]() | ![]() |
销量![]() | ![]() | ![]() | ![]() | ![]() | ![]() |
(1)求销量


(2)预计今后的销售中,销量与单价服从(1)中的线性回归方程,已知每件商品



(参考数据:





围建一个面积为360m2的矩形场地,要求矩形场地的一面利用旧墙(利用旧墙需维修),其它三面围墙要新建,在旧墙的对面的新墙上要留一个宽度为2m的进出口,如图所示,已知旧墙的维修费用为45元/m,新墙的造价为180元/m,设利用的旧墙的长度为x(单位:元).

(Ⅰ)将y表示为x的函数;
(Ⅱ)试确定x,使修建此矩形场地围墙的总费用最小,并求出最小总费用.