刷题首页
题库
高中数学
题干
某乡镇为了进行美丽乡村建设,规划在长为10千米的河流
的一侧建一条观光带,观光带的前一部分为曲线段
,设曲线段
为函数
,
(单位:千米)的图象,且曲线段的顶点为
;观光带的后一部分为线段
,如图所示.
(1)求曲线段
对应的函数
的解析式;
(2)若计划在河流
和观光带
之间新建一个如图所示的矩形绿化带
,绿化带由线段
构成,其中点
在线段
上.当
长为多少时,绿化带的总长度最长?
上一题
下一题
0.99难度 解答题 更新时间:2020-01-02 03:51:47
答案(点此获取答案解析)
同类题1
随着机构改革的深入,各单位要减员增效,一家公司现有职员
人(
),且
为偶数,每人每年可创利5万元,据评估,每裁员1人,留守职员每人每年多创利润0. 1万元,但公司要付下岗职员每人每年3万元的生活费.
(1)假设公司裁员
人,请写出公司获得的利益
关于
的解析式;
(2)公司正常的运转所需人数不得少于现有职员的
,为了获得最大效益,该公司应当裁员多少人.
同类题2
某飞机制造公司一年中最多可生产某种型号的飞机100架.已知制造x架该种飞机的产值函数为
(单位:万元),成本函数
(单位:万元).利润是收入与成本之差,又在经济学中,函数
的边际利润函数
定义为:
(1)求利润函数
及边际利润函数
;(利润=产值-成本)
(2)问该公司的利润函数
与边际利润函数
是否具有相等的最大值?
同类题3
如图,在直角坐标系中,曲线段
是函数
图象的一部分,
为曲线段
上异于点
,
一个动点,
轴,垂足为
,
轴,垂足为
.
(1)求
长度的范围;
(2)求矩形
面积的最大值.
同类题4
某公司生产一种化工产品,该产品若以每吨10万元的价格销售,每年可售出1000吨,若将该产品每吨分价格上涨
,则每年的销售数量将减少
,其中
m
为正常数,销售的总金额为
y
万元.
(1)当
时,该产品每吨的价格上涨百分之几,可使销售总金额最大?
(2)当
时,若能使销售总金额比涨价前增加,试设定
m
的取值范围.
同类题5
某化工厂引进一条先进生产线生产某种化工产品,其生产的总成本
y
(万元)与年产量
x
(吨)之间的函数关系式可以近似表示为
,已知此生产线年产量最大为210吨,若每吨产品平均出厂价为40万元,那么当年产量为多少吨时,可以获得最大利润?最大利润是多少?
相关知识点
函数与导数
函数的应用
函数模型及其应用
常见的函数模型(1)——二次、分段函数
利用二次函数模型解决实际问题
分段函数模型的应用