一种放射性物质不断变化为其他物质,每经过10年,剩余的物质为原来的0.9,若剩余下的物质为原来的0.729,则经过的年数为( )
A.20B.30C.40D.50
当前题号:1 | 题型:单选题 | 难度:0.99
某厂家拟在新年举行大型的促销活动,经测算某产品当促销费用为万元时,销售量万件满足(其中为正常数).现假定生产量与销售量相等,已知生产该产品万件还需投入成本万元(不含促销费用),产品的销售价格定为万元/万件.
(1)将该产品的利润万元表示为促销费用万元的函数;
(2)促销费用投入多少万元时,厂家的利润最大.
当前题号:2 | 题型:解答题 | 难度:0.99
某工厂拟建一座平面图(如右图所示)为矩形且面积为200平方米的三级污水处理池,由于地形限制,长、宽都不能超过16米,如果池外周壁建造单价为每米400元,中间两条隔墙建造单价为每米248元,池底建造单价为每平方米80元(池壁厚度忽略不计,且池无盖).

(1)写出总造价y(元)与污水处理池长x(米)的函数关系式,并指出其定义域;
(2)求污水处理池的长和宽各为多少时,污水处理池的总造价最低?并求最低总造价.
当前题号:3 | 题型:解答题 | 难度:0.99
建造一个容积为、深为的无盖长方体形的水池,已知池底和池壁的造价分别为
(1)求总造价(单位:元)关于底边一边长(单位:)的函数解析式,并指出函数的定义域;
(2)如果要求总造价不超过元,求的取值范围;
(3)求总造价的最小值.
当前题号:4 | 题型:解答题 | 难度:0.99
某投资公司计划投资A,B两种金融产品,根据市场调查与预测,A产品的利润y1与投资金额x的函数关系为y1=18-,B产品的利润y2与投资金额x的函数关系为y2(注:利润与投资金额单位:万元).
(1)该公司已有100万元资金,并全部投入A,B两种产品中,其中x万元资金投入A产品,试把A,B两种产品利润总和表示为x的函数,并写出定义域;
(2)在(1)的条件下,试问:怎样分配这100万元资金,才能使公司获得最大利润?其最大利润为多少万元?
当前题号:5 | 题型:解答题 | 难度:0.99
某种汽车的购车费用是10万元,每年使用的保险费、养路费、汽油费约为万元,年维修费用第一年是万元,第二年是万元,第三年是万元,…,以后逐年递增万元汽车的购车费用、每年使用的保险费、养路费、汽油费、维修费用的和平均摊到每一年的费用叫做年平均费用.设这种汽车使用年的维修费用的和为,年平均费用为.
(1)求出函数的解析式;
(2)这种汽车使用多少年时,它的年平均费用最小?最小值是多少?
当前题号:6 | 题型:解答题 | 难度:0.99
某旅游景区的景点处和处之间有两种到达方式,一种是沿直线步行,另一种是沿索道乘坐缆车,现有一名游客从处出发,以的速度匀速步行,后到达处,在处停留后,再乘坐缆车回到处.假设缆车匀速直线运动的速度为.

(1)求该游客离景点的距离关于出发后的时间的函数解析式,并指出该函数的定义域;
(2)做出(1)中函数的图象,并求该游客离景点的距离不小于的总时长.
当前题号:7 | 题型:解答题 | 难度:0.99
某商家计划投入10万元经销甲,乙两种商品,根据市场调查统计,当投资额为万元,经销甲,乙两种商品所获得的收益分别为万元与万元,其中,当该商家把10万元全部投入经销乙商品时,所获收益为5万元.
(1)求实数a的值;
(2)若该商家把10万元投入经销甲,乙两种商品,请你帮他制订一个资金投入方案,使他能获得最大总收益,并求出最大总收益.
当前题号:8 | 题型:解答题 | 难度:0.99
2018年非洲猪瘟在东北三省出现,为了进行防控,某地生物医药公司派出技术人员对当地甲乙两个养殖场提供技术服务,方案和收费标准如下:
方案一,公司每天收取养殖场技术服务费40元,对于需要用药的每头猪收取药费2元,不需要用药的不收费;
方案二,公司每天收取养殖场技术服务费120元,若需要用药的猪不超过45头,不另外收费,若需要用药的猪超过45头,超过部分每天收取药费8元.
(1)设日收费为(单位:元),每天需要用药的猪的数量为,试写出两种方案中 的函数关系式.
(2)若该医药公司从10月1日起对甲养殖场提供技术服务,10月31日该养殖场对其中一个猪舍9月份和10月份猪的发病数量进行了统计,得到如下列联表.
 
9月份
10月份
合计
未发病
40
85
125
发病
65
20
85
合计
105
105
210
 

根据以上列联表,判断是否有的把握认为猪未发病与医药公司提供技术服务有关.
附:

0.050
0.010
0.001

3.841
6.635
10.828
 
(3)当地的丙养殖场对过去100天猪的发病情况进行了统计,得到如上图所示的条形统计图.依据该统计数据,从节约养殖成本的角度去考虑,若丙养殖场计划结合以往经验从两个方案中选择一个,那么选择哪个方案更合适,并说明理由.
当前题号:9 | 题型:解答题 | 难度:0.99
某城市地铁项目正在紧张建设中,通车后将给市民出行带来便利.已知某条线路通车后,地铁的发车时间间隔(单位:分钟)满足.经测算,地铁载客量与发车时间间隔相关,当时地铁为满载状态,载客量为人,当时,载客量会减少,减少的人数与的平方成正比,且发车时间间隔为分钟时的载客量为人,记地铁载客量为.
(1)求的表达式,并求当发车时间间隔为分钟时,地铁的载客量;
(2)若该线路每分钟的净收益为(元),问当发车时间间隔为多少时,该线路每分钟的净收益最大?每分钟的最大净收益为多少?
当前题号:10 | 题型:解答题 | 难度:0.99