刷题首页
题库
高中数学
题干
建造一个容积为
、深为
的无盖长方体形的水池,已知池底和池壁的造价分别为
元
和
元
.
(1)求总造价
(单位:元)关于底边一边长
(单位:
)的函数解析式,并指出函数的定义域;
(2)如果要求总造价不超过
元,求
的取值范围;
(3)求总造价
的最小值.
上一题
下一题
0.99难度 解答题 更新时间:2020-03-15 10:14:24
答案(点此获取答案解析)
同类题1
网店和实体店各有利弊,两者的结合将在未来一段时期内,成为商业的一个主要发展方向.某品牌行车记录仪支架销售公司从
年
月起开展网络销售与实体店体验安装结合的销售模式.根据几个月运营发现,产品的月销量
万件与投入实体店体验安装的费用
万元之间满足
函数关系式.已知网店每月固定的各种费用支出为
万元,产品每
万件进货价格为
万元,若每件产品的售价定为“进货价的
”与“平均每件产品的实体店体验安装费用的一半”之和,则该公司最大月利润是________万元.
同类题2
按照某学者的理论,假设一个人生产某产品单件成本为
元,如果他卖出该产品的单价为
元,则他的满意度为
;如果他买进该产品的单价为
元,则他的满意度为
.如果一个人对两种交易(卖出或买进)的满意度分别为
和
,则他对这两种交易的综合满意度为
.
现假设甲生产A、B两种产品的单件成本分别为12元和5元,乙生产A、B两种产品的单件成本分别为3元和20元,设产品A、B的单价分别为
元和
元,甲买进A与卖出B的综合满意度为
,乙卖出A与买进B的综合满意度为
(1)求
和
关于
、
的表达式;当
时,求证:
=
;
(2)设
,当
、
分别为多少时,甲、乙两人的综合满意度均最大?最大的综合满意度为多少?(3)记(2)中最大的综合满意度为
,试问能否适当选取
、
的值,使得
和
同时成立,但等号不同时成立?试说明理由。
同类题3
一批救灾物资随26辆汽车从某市以
的速度送达灾区,已知运送的路线长
,为了安全起见,两辆汽车的间距不得小于
,那么这批物资全部到达灾区最少需要时间( )
A.
B.
C.
D.
同类题4
水培植物需要一种植物专用营养液,已知每投放
(
且
)个单位的营养液,它在水中释放的浓度
(克/升)随着时间
(天)变化的函数关系式近似为
,其中
,若多次投放,则某一时刻水中的营养液浓度为每次投放的营养液在相应时刻所释放的浓度之和,根据经验,当水中营养液的浓度不低于4(克/升)时,它才能有效.
(1)若只投放一次2个单位的营养液,则有效时间最多可能达到几天?
(2)若先投放2个单位的营养液,3天后再投放
个单位的营养液,要使接下来的2天中,营养液能够持续有效,试求
的最小值.
相关知识点
函数与导数
函数的应用
函数模型及其应用
常见的函数模型(1)——二次、分段函数
分式型函数模型的应用