- 集合与常用逻辑用语
- 函数与导数
- 函数与方程
- + 函数模型及其应用
- 几类不同增长的函数模型
- 常见的函数模型(1)——二次、分段函数
- 常见的函数模型(2)——指数、对数、幂函数
- 函数模型的应用实例
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
某种商品进价为4元/件,当日均零售价为6元/件,日均销售100件,当单价每增加1元,日均销售量减少10件,试计算该商品在销售过程中,若每天固定成本为20元,则预计单价为多少时,利润最大( )
A.8元/件 | B.10元/件 | C.12元/件 | D.16元/件 |
某控制器中有一个易损部件,该部件由两个电子元件按图1方式连接而成.已知这两个电子元件的使用寿命(单位:小时)均服从正态分布
,且各个元件能否正常工作相互独立.(一个月按30天算)

(1)求该部件的使用寿命达到一个月及以上的概率;
(2)为了保证该控制器能稳定工作,将若干个同样的部件按图2连接在一起组成集成块.每一个部件是否能正常工作相互独立.某开发商准备大批量生产该集成块,在投入生产前,进行了市场调查,结果如下表:
其中
是集成块使用寿命达到一个月及以上的概率,
为集成块使用的部件个数.报据市场调查,试分析集成块使用的部件个数为多少时,开发商所得利润最大?并说明理由.



(1)求该部件的使用寿命达到一个月及以上的概率;
(2)为了保证该控制器能稳定工作,将若干个同样的部件按图2连接在一起组成集成块.每一个部件是否能正常工作相互独立.某开发商准备大批量生产该集成块,在投入生产前,进行了市场调查,结果如下表:
集成块类型 | ![]() | 成本![]() | 销售金额![]() |
Ⅰ | ![]() | ![]() | ![]() |
Ⅱ | ![]() | ![]() | ![]() |
Ⅲ | ![]() | ![]() | ![]() |
其中


我市为迎接一项重要的体育赛事,要完成
,
两座场馆的地基建造工程.某工程队需要把600名工人分成两组,一组完成
场馆的甲级标准地基2000
,同时另一组完成
场馆的乙级标准地基3000
;据测算,完成甲级标准地基每平方米的工程量为50人
天,完成乙级标准地基每平方米的工程量为30人
天.
(1)若工程队分配
名工人去
场馆,求
场馆地基和
场馆地基建造时间
和
(单位:天)的函数解析式;
(2)
、
两个场馆同时开工,该工程队如何分配两个场馆的工人数量,可以使得工期最短.
(参考数据:
,
,
.备注:若地基面积为
平方米,每平方米的工程量为
人/天,工人数
人,则工期为
天.)








(1)若工程队分配






(2)


(参考数据:







某群体的人均通勤时间,是指单日内该群体中成员从居住地到工作地的平均用时.某地上班族
中的成员仅以自驾或公交方式通勤.分析显示:当
中
的成员自驾时,自驾群体的人均通勤时间为
(单位:分钟),而公交群体的人均通勤时间不受
影响,恒为
分钟,试根据上述分析结果回答下列问题:
(1)当
取何值时,公交群体的人均通勤时间等于自驾群体的人均通勤时间?
(2)已知上班族
的人均通勤时间计算公式为
,讨论
单调性,并说明其实际意义.







(1)当

(2)已知上班族



李明自主创业,在网上经营一家水果店,销售的水果中有草莓、京白梨、西瓜、桃,价格依次为
元/盒、
元/盒、
元/盒、
元/盒.为增加销量,李明对这四种水果进行促销:一次购买水果的总价达到
元,顾客就少付
元.每笔订单顾客网上支付成功后,李明会得到支付款的
.
①当
时,顾客一次购买草莓和西瓜各
盒,需要支付______元;
②在促销活动中,为保证李明每笔订单得到的金额均不低于促销前总价的七折,则
的最大值为______.







①当


②在促销活动中,为保证李明每笔订单得到的金额均不低于促销前总价的七折,则

当生物死亡后,其体内原有的碳
的含量大约每经过
年衰减为原来的一半,这个时间称为“半衰期”.在一次考古挖掘中,考古学家发现一批鱼化石,经检测其碳
含量约为原始含量的
,则该生物生存的年代距今约( )




A.![]() | B.![]() | C.![]() | D.![]() |
某林场现有木材存量为
,每年以25%的增长率逐年递增,但每年年底要砍伐的木材量为
,经过
年后林场木材存有量为
(1)求
的解析式
(2)为保护生态环境,防止水土流失,该地区每年的森林木材存量不应少于
,如果
,那么该地区会发生水土流失吗?若会,要经过几年?(取
)




(1)求

(2)为保护生态环境,防止水土流失,该地区每年的森林木材存量不应少于



鱼卷是泉州十大名小吃之一,不但本地人喜欢,而且深受外来游客的赞赏.小张从事鱼卷生产和批发多年,有着不少来自零售商和酒店的客户当地的习俗是农历正月不生产鱼卷,客户正月所需要的鱼卷都会在上一年农历十二月底进行一次性采购小张把去年年底采购鱼卷的数量x(单位:箱)在
的客户称为“熟客”,并把他们去年采购的数量制成下表:
(1)根据表中的数据作出频率分布直方图,并估计采购数在168箱以上(含168箱)的“熟客”人数;
(2)若去年年底“熟客”们采购的鱼卷数量占小张去年年底总的销售量的
,估算小张去年年底总的销售量(同一组中的数据用该组区间的中点值为代表);
(3)由于鱼卷受到游客们的青睐,小张做了一份市场调查,决定今年年底是否在网上出售鱼卷,若不在网上出售鱼卷,则按去年的价格出售,每箱利润为20元,预计销售量与去年持平;若在网上出售鱼卷,则需把每箱售价下调2至5元,且每下调m元(
)销售量可增加1000m箱,求小张今年年底收入Y(单位:元)的最大值.

采购数x | ![]() | ![]() | ![]() | ![]() | ![]() |
客户数 | 10 | 10 | 5 | 20 | 5 |
(1)根据表中的数据作出频率分布直方图,并估计采购数在168箱以上(含168箱)的“熟客”人数;
(2)若去年年底“熟客”们采购的鱼卷数量占小张去年年底总的销售量的

(3)由于鱼卷受到游客们的青睐,小张做了一份市场调查,决定今年年底是否在网上出售鱼卷,若不在网上出售鱼卷,则按去年的价格出售,每箱利润为20元,预计销售量与去年持平;若在网上出售鱼卷,则需把每箱售价下调2至5元,且每下调m元(

某快餐代卖店代售多种类型的快餐,深受广大消费者喜爱.其中,
种类型的快餐每份进价为
元,并以每份
元的价格销售.如果当天20:00之前卖不完,剩余的该种快餐每份以
元的价格作特价处理,且全部售完.
(1)若该代卖店每天定制
份
种类型快餐,求
种类型快餐当天的利润
(单位:元)关于当天需求量
(单位:份,
)的函数解析式;
(2)该代卖店记录了一个月
天的
种类型快餐日需求量(每天20:00之前销售数量)
(i)假设代卖店在这一个月内每天定制
份
种类型快餐,求这一个月
种类型快餐的日利润(单位:元)的平均数(精确到
);
(ii)若代卖店每天定制
份
种类型快餐,以
天记录的日需求量的频率作为日需求量发生的概率,求
种类型快餐当天的利润不少于
元的概率.




(1)若该代卖店每天定制






(2)该代卖店记录了一个月


日需求量 | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() |
天数 | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() |
(i)假设代卖店在这一个月内每天定制




(ii)若代卖店每天定制





某大学生参加社会实践活动,对某公司1月份至6月份销售某种配件的销售量及销售单价进行了调查,销售单价
和销售量
之间的一组数据如下表所示:
(1)根据1至5月份的数据,先求出
关于
的回归直线方程;6月份的数据作为检验数据.若由回归直线方程得到的预测数据与检验数据的误差不超过
,则认为所得到的回归直线方程是理想的.试问所求得的回归直线方程是否理想?
(2)预计在今后的销售中,销售量与销售单价仍然服从(1)中的回归关系,如果该种机器配件的成本是
元/件,那么该配件的销售单价应定为多少元才能获得最大利润?(注:利润=销售收入-成本).
参考数据:
,
.
参考公式:对于一组数据
,
,…,
,其回归直线
的斜率和截距的最小二乘估计分别为:
,
.


月份 | 1 | 2 | 3 | 4 | 5 | 6 |
销售单价![]() | 9 | 9.5 | 10 | 10.5 | 11 | 8 |
销售量![]() | 11 | 10 | 8 | 6 | 5 | 14.2 |
(1)根据1至5月份的数据,先求出



(2)预计在今后的销售中,销售量与销售单价仍然服从(1)中的回归关系,如果该种机器配件的成本是

参考数据:


参考公式:对于一组数据





